Skip to main content

tanh-sinh quadrature for Python

Project description

logo

PyPi Version PyPI pyversions GitHub stars PyPi downloads

Discord

The rather modern tanh-sinh quadrature is different from classical Gaussian integration methods in that it doesn't integrate any function exactly, not even polynomials of low degree. Its tremendous usefulness rather comes from the fact that a wide variety of functions, even seemingly difficult ones with (integrable) singularities, can be integrated with arbitrary precision.

Install with

pip install tanh-sinh

and use it like

import tanh_sinh
import numpy as np

val, error_estimate = tanh_sinh.integrate(
    lambda x: np.exp(x) * np.cos(x),
    0,
    np.pi / 2,
    1.0e-14,
    # Optional: Specify first and second derivative for better error estimation
    # f_derivatives={
    #     1: lambda x: np.exp(x) * (np.cos(x) - np.sin(x)),
    #     2: lambda x: -2 * np.exp(x) * np.sin(x),
    # },
)

If you want more digits, use mpmath for arbitrary precision arithmetic:

import tanh_sinh
from mpmath import mp
import sympy

mp.dps = 50

val, error_estimate = tanh_sinh.integrate(
    lambda x: mp.exp(x) * sympy.cos(x),
    0,
    mp.pi / 2,
    1.0e-50,  # !
    mode="mpmath",
)

If the function has a singularity at a boundary, it needs to be shifted such that the singularity is at 0. (This is to avoid round-off errors for points that are very close to the singularity.) If there are singularities at both ends, the function can be shifted both ways and be handed off to integrate_lr; For example, for the function 1 / sqrt(1 - x**2), this gives

import numpy
import tanh_sinh

# def f(x):
#    return 1 / numpy.sqrt(1 - x ** 2)

val, error_estimate = tanh_sinh.integrate_lr(
    lambda x: 1 / numpy.sqrt(-(x**2) + 2 * x),  # = 1 / sqrt(1 - (x-1)**2)
    lambda x: 1 / numpy.sqrt(-(x**2) + 2 * x),  # = 1 / sqrt(1 - (-(x-1))**2)
    2,  # length of the interval
    1.0e-10,
)
print(numpy.pi)
print(val)
3.141592653589793
3.1415926533203944

Relevant publications

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

tanh_sinh-0.3.3-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file tanh_sinh-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: tanh_sinh-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tanh_sinh-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 576d260f1d6c528ba212eb64ce12d1cdf7769fe7690fcbcf85b18c1a0e03d45a
MD5 d96bfcb9ee76aad580138ad80b1bb40f
BLAKE2b-256 840eac15071e194135bd98325addfe004567820cdab357fa64b222fe152cec73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page