Skip to main content

Tapdata Python Sdk

Project description

Tapdata Python Sdk

中文文档地址

Install

  1. Install python 3.7, pip By Yourself.
  2. Run pip install tapdata_cli to install sdk.
  3. If you use poetry, please run poetry add tapdata_cli to install sdk.

Initial

server = "127.0.0.1:3000"
access_code = "3324cfdf-7d3e-4792-bd32-571638d4562f"
from tapdata_cli import cli
cli.init(server, access_code)

Multi-thread concurrency is not supported

It will send a request to the server to obtain the identity information and save it as a global variable. Therefore, after multiple init the 'server' and 'access_code' variable will be overwritten.

For situations where you need to use different servers and access_codes concurrently, use Python's multiprocess.

DataSource

Create DataSource

The SDK supports the following data source operations:

  • Mongo
  • Mysql
  • Postgres
  • Oracle
  • Kafka

To create MySQL/Mongo:

from tapdata_cli import cli

connector = "mongodb"  # datasource type,mongodb mysql postgres
mongo = cli.DataSource("mongodb", name="mongo")
mongo.uri("mongodb://localhost:8080")  # datasource uri
mongo.save()

or:

from tapdata_cli import cli

mongo = cli.DataSource("mongodb", name="mongo")
mongo.host("localhost:27017").db("source").username("user").password("password").props("")
mongo.type("source")  # datasource type,source -> only source,target -> only target,source_and_target -> target and source (default)
mongo.save()  # success -> True, Failure -> False

To Create Oracle database:

from tapdata_cli import cli

datasource_name = "ds_name"  # datasource name
oracle = cli.Oracle(datasource_name)
oracle.thinType("SERVICE_NAME")  # connect type SID/SERVER_NAME (database name/service name)
oracle.host("106.55.169.3").password("Gotapd8!").port("3521").schema("TAPDATA").db("TAPDATA").username("tapdata")
oracle.save()

To create Kafka datasource:

from tapdata_cli import cli

database_name = "kafka_name"
kafka = cli.Kafka(database_name)
kafka.host("106.xx.xx.x").port("9092")
kafka.save()

To create Postgres datasource:

from tapdata_cli import cli

pg = cli.Postgres("jack_postgre") 
pg.host("106.55.169.3").port(5496).db("insurance").username("postgres").password("tapdata").type("source").schema("insurance")
pg.validate()
pg.save()

As for Kafka/Oracle/Postgres, the creation mode is heterogeneous. In the future, a unified interface will be provided in the form of datasource, which is backward compatible and will not affect the existing version.

DataSource List

from tapdata_cli import cli

cli.DataSource().list()

# return struct

{
    "total": 94,
    "items": [{
        "id": "",
        "lastUpdBy": "",
        "name": "",
        "config": {},
        "connection_type": "",
        "database_type": "",
        "definitionScope": "",
        "definitionVersion": "",
        "definitionGroup": "",
        "definitionPdkId": "",
        ...
    }]
}

Get datasource according to ID/name

from tapdata_cli import cli

cli.DataSource(id="")  # by id
cli.DataSource(name="")  # by name

Pipeline

A simple data migration Job

from tapdata_cli import cli

# Create datasource first
source = cli.DataSource("mongodb", name="source").uri("").save()
target = cli.DataSource("mongodb", name="target").uri("").save()
# create Pipeline
p = cli.Pipeline(name="example_job")
p.readFrom("source").writeTo("target")
# start
p.start()
# stop
p.stop()
# delete
p.delete()
# status
p.status()
# get job list
cli.Job.list()

Job is the underlying implementation of pipeline, so you can use job.start() like pipeline.start().

# init job (get job info) by id
from tapdata_cli import cli
job = cli.Job(id="some id string")
job.save() # success -> True, failure -> False
job.start() # success -> True, failure -> False

Data development job

Before performing data development tasks, you need to change the task type to Sync:

from tapdata_cli import cli

source = cli.DataSource("mongodb", name="source").uri("").save()
target = cli.DataSource("mongodb", name="target").uri("").save()
p = cli.Pipeline(name="")
p = p.readFrom("source.player") # source is db, player is table
p.dag.jobType = cli.JobType.sync

Then perform specific operations:

# filter cli.FilterType.keep (keep data) / cli.FilterType.delete (delete data)
p = p.filter("id > 2", cli.FilterType.keep)

# filerColumn cli.FilterType.keep (keep column) / cli.FilterType.delete (delete column)
p = p.filterColumn(["name"], cli.FilterType.delete)

# rename
p = p.rename("name", "player_name")

# valueMap
p = p.valueMap("position", 1) 

# js
p = p.js("return record;")

p.writeTo("target.player")  # target is db, player is table

master slave merge:

# merge
p2 = cli.Pipeline(name="source_2")  # Create merged pipeline
p3 = p.merge(p2, [('id', 'id')]).writeTo("target")  # Merge pipeline

p3.writeTo("target.player")  # target is db, player is table

Create initial_sync/cdc job

By default, all tasks created through pipeline are "full + incremental" job.

You can create a initial_sync job by:

from tapdata_cli import cli

p = cli.Pipeline(name="")
p.readFrom("source").writeTo("target")
config = {"type": "initial_sync"}  # initial_sync
p1 = p.config(config=config)
p1.start()

As above, changing config to {"type": "cdc"} can create an incremental task.

All pipeline configuration modification operations are passed in through the pipeline.config method through the config default parameters, and the parameters are verified.

For more configuration modification items, please see this file, get more configuration items.

API Operation

Update/Create ApiServer

from tapdata_cli import cli

# create
cli.ApiServer(name="test", uri="http://127.0.0.1:3000/").save()

# update
# 1.get ApiServer id
api_server_id = cli.ApiServer.list()["id"]
# 2.update ApiServer
cli.ApiServer(id=api_server_id, name="test_2", uri="http://127.0.0.1:3000/").save()

# delete
cli.ApiServer(id=api_server_id).delete()

Publish Api

from tapdata_cli import cli
cli.Api(name="test", table="source.player").publish() # source is db, player is table

Unpublish APi

from tapdata_cli import cli
cli.Api(name="test").unpublish()

Delete Api

from tapdata_cli import cli
cli.Api(name="test").delete()

Api Status

from tapdata_cli import cli
cli.Api().status("test")  # success -> "pending" or "active" / failure -> None

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tapdata_cli-2.2.31.tar.gz (68.9 kB view details)

Uploaded Source

Built Distribution

tapdata_cli-2.2.31-py3-none-any.whl (69.6 kB view details)

Uploaded Python 3

File details

Details for the file tapdata_cli-2.2.31.tar.gz.

File metadata

  • Download URL: tapdata_cli-2.2.31.tar.gz
  • Upload date:
  • Size: 68.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.1 CPython/3.10.6 Darwin/21.5.0

File hashes

Hashes for tapdata_cli-2.2.31.tar.gz
Algorithm Hash digest
SHA256 ad83835017f341eb16fd39830e36c97ad7fd698a77961a9af1f467585a72af05
MD5 dcb18c8e2adfbbcef1dc4325aa27e291
BLAKE2b-256 f8d8e9da28baf80ab6e44f2db8f00dbe4d1912a9faa07fc392aa65e140acc6d8

See more details on using hashes here.

Provenance

File details

Details for the file tapdata_cli-2.2.31-py3-none-any.whl.

File metadata

  • Download URL: tapdata_cli-2.2.31-py3-none-any.whl
  • Upload date:
  • Size: 69.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.1 CPython/3.10.6 Darwin/21.5.0

File hashes

Hashes for tapdata_cli-2.2.31-py3-none-any.whl
Algorithm Hash digest
SHA256 82c43651ed8fcbdd8f41d88360f244d98b87cb0a3c162caa82aa65a848c99966
MD5 63e68195f5195cd12d1892eee31ab5e4
BLAKE2b-256 4040edfce26dd49ff0070d7de13c4f4b8283cde79cd314af6f8a6174f0605d5d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page