Skip to main content

A package for developing Task Bots

Project description

Mask-Predict

Download model

Description Dataset Model
MASK-PREDICT [WMT14 English-German] download (.tar.bz2)
MASK-PREDICT [WMT14 German-English] download (.tar.bz2)
MASK-PREDICT [WMT16 English-Romanian] download (.tar.bz2)
MASK-PREDICT [WMT16 Romanian-English] download (.tar.bz2)
MASK-PREDICT [WMT17 English-Chinese] download (.tar.bz2)
MASK-PREDICT [WMT17 Chinese-English] download (.tar.bz2)

Preprocess

text=PATH_YOUR_DATA

output_dir=PATH_YOUR_OUTPUT

src=source_language

tgt=target_language

model_path=PATH_TO_MASKPREDICT_MODEL_DIR

python preprocess.py --source-lang ${src} --target-lang ${tgt} --trainpref $text/train --validpref $text/valid --testpref $text/test --destdir ${output_dir}/data-bin --workers 60 --srcdict ${model_path}/maskPredict_${src}${tgt}/dict.${src}.txt --tgtdict ${model_path}/maskPredict${src}_${tgt}/dict.${tgt}.txt

Train

model_dir=PLACE_TO_SAVE_YOUR_MODEL

python train.py ${output_dir}/data-bin --arch bert_transformer_seq2seq --share-all-embeddings --criterion label_smoothed_length_cross_entropy --label-smoothing 0.1 --lr 5e-4 --warmup-init-lr 1e-7 --min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates 10000 --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 --task translation_self --max-tokens 8192 --weight-decay 0.01 --dropout 0.3 --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 --decoder-embed-dim 512 --fp16 --max-source-positions 10000 --max-target-positions 10000 --max-update 300000 --seed 0 --save-dir ${model_dir}

Evaluation

python generate_cmlm.py ${output_dir}/data-bin --path ${model_dir}/checkpoint_best_average.pt --task translation_self --remove-bpe --max-sentences 20 --decoding-iterations 10 --decoding-strategy mask_predict

License

MASK-PREDICT is CC-BY-NC 4.0. The license applies to the pre-trained models as well.

Citation

Please cite as:

@inproceedings{ghazvininejad2019MaskPredict,
  title = {Mask-Predict: Parallel Decoding of Conditional Masked Language Models},
  author = {Marjan Ghazvininejad, Omer Levy, Yinhan Liu, Luke Zettlemoyer},
  booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing},
  year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

taskbots-0.1.0.tar.gz (144.5 kB view details)

Uploaded Source

Built Distribution

taskbots-0.1.0-py3-none-any.whl (211.9 kB view details)

Uploaded Python 3

File details

Details for the file taskbots-0.1.0.tar.gz.

File metadata

  • Download URL: taskbots-0.1.0.tar.gz
  • Upload date:
  • Size: 144.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for taskbots-0.1.0.tar.gz
Algorithm Hash digest
SHA256 185d20037479b21a4cee42dca9108ce067d98f150ed83b00b9e6d9f5fa0eeb2a
MD5 4cc138f3cfb00e55203e2ecf86caff75
BLAKE2b-256 132c93564390acd1201e3c8b34cb3ba8b28188b8323719d2b63b66db4a997406

See more details on using hashes here.

File details

Details for the file taskbots-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: taskbots-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 211.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for taskbots-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2f3923fa446aaf1f09fbc6d9ff25dea4b68e2c7da4db05ddfb60d241e4e8f8c3
MD5 a8e45084373752bce809eff0acb16ce3
BLAKE2b-256 2daf5be9490c21e05fce0592763538323e3f44ff84c1ad21f87c4dc51d6648db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page