Skip to main content

YoloV8 model for the detection of Tau fibrils in Cryo-EM images.

Project description

EPFL Center for Imaging logo

🧬 Tau Fibrils Yolo - Object detection in Cryo-EM images

screenshot

We provide a YoloV8 model for the detection of oriented bounding boxes (OBBs) of Tau fibrils in Cryo-EM images.

[Installation] [Model] [Usage]

This project is part of a collaboration between the EPFL Center for Imaging and the Laboratory of Biological Electron Microscopy.

Installation

As a standalone app

Soon.

As a Python package

We recommend performing the installation in a clean Python environment. Install our package from PyPi:

pip install tau-fibrils-yolo

or from the repository:

pip install git+https://gitlab.com/center-for-imaging/tau-fibrils-object-detection.git

or clone the repository and install with:

git clone git+https://gitlab.com/center-for-imaging/tau-fibrils-object-detection.git
cd tau-fibrils-yolo
pip install -e .

Model

The model weights (6.5 Mb) are automatically downloaded from this repository on Zenodo the first time you run inference. The model files are saved in the user home folder in the .yolo directory.

Usage

In Napari

To use our model in Napari, start the viewer with

napari -w tau-fibrils-yolo

or open the Napari menu bar and select Plugins > Tau fibrils detection.

Open an image using File > Open files or drag-and-drop an image into the viewer window.

Sample data: To test the model, you can run it on our provided sample image. In Napari, open the image from File > Open Sample > [TODO - add a sample image].

As a library

You can run the model to detect fibrils in an image (represented as a numpy array).

from tau_fibrils_yolo import FibrilsDetector

detector = FibrilsDetector()

boxes, probabilities = detector.predict(your_image)

As a CLI

Run inference on an image from the command-line. For example:

tau_fibrils_predict_image -i /path/to/folder/image_001.tif

The command will save the segmentation next to the image:

folder/
    ├── image_001.tif
    ├── image_001_results.csv

Optionally, you can use the -r flag to also rescale the image by a given factor.

To run inference in batch on all images in a folder, use:

tau_fibrils_predict_folder -i /path/to/folder/

This will produce:

folder/
    ├── image_001.tif
    ├── image_001_results.csv
    ├── image_002.tif
    ├── image_002_results.csv

Issues

If you encounter any problems, please file an issue along with a detailed description.

License

This model is licensed under the BSD-3 license.

Acknowledgements

We would particularly like to thank Valentin Vuillon for annotating the images on which this model was trained, and for developing the preliminary code that laid the foundation for this image analysis project. The repository containing his original version of the project can be found here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tau_fibrils_yolo-0.0.2.tar.gz (2.2 MB view hashes)

Uploaded Source

Built Distribution

tau_fibrils_yolo-0.0.2-py3-none-any.whl (13.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page