Skip to main content

tblfaker is a Python library to generate fake tabular data.

Project description

Summary

tblfaker is a Python library to generate fake tabular data.

PyPI package version Supported Python versions Linux/macOS CI status Windows CI status Test coverage

Usage

Basic Usage

Generate tabular data at random

Sample Code:
from tblfaker import TableFaker

faker = TableFaker()

print("[1]")
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)

print("\n[2]")
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)
Output:
[1]
Row(name='Jonathan Hendrix', address='368 Melanie Inlet Suite 890\nLake Stephanie, MT 17441')
Row(name='Kristina Simmons', address='3867 Perry Alley Suite 957\nLindafurt, FL 12507')
Row(name='Rebecca Velasquez', address='107 Karla Forges Apt. 925\nEast Jonathan, NC 85462')
Row(name='Jordan Morris', address='6341 Jessica Walks\nReynoldsshire, MD 05131')

[2]
Row(name='Caitlin Bush', address='87380 Barbara Haven Suite 042\nHutchinsonburgh, IA 39544')
Row(name='Jennifer King', address='39729 Gray Inlet Apt. 693\nPort Peter, AL 80733')
Row(name='Stephanie Smith', address='256 Emily Street\nCooperhaven, MS 70299')
Row(name='Nicholas Miller', address='59845 Daniel Ford Suite 729\nDamontown, UT 19811

Reproduce same tabular data

Fake tabular data can reproduce by passing the same seed value to TableFaker constructor.

Sample Code:
from tblfaker import TableFaker

seed = 1

print("[1]")
faker = TableFaker(seed=seed)
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)

print("\n[2]")
faker = TableFaker(seed=seed)
for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)
Output:
[1]
Row(name='Ryan Gallagher', address='6317 Mary Light\nSmithview, HI 13900')
Row(name='Amanda Johnson', address='3608 Samuel Mews Apt. 337\nHousebury, WA 13608')
Row(name='Willie Heath', address='868 Santiago Grove\nNicolehaven, NJ 05026')
Row(name='Dr. Jared Ortega', address='517 Rodriguez Divide Suite 570\nWest Melinda, NH 85325')

[2]
Row(name='Ryan Gallagher', address='6317 Mary Light\nSmithview, HI 13900')
Row(name='Amanda Johnson', address='3608 Samuel Mews Apt. 337\nHousebury, WA 13608')
Row(name='Willie Heath', address='868 Santiago Grove\nNicolehaven, NJ 05026')
Row(name='Dr. Jared Ortega', address='517 Rodriguez Divide Suite 570\nWest Melinda, NH 85325')

Set locale for fake data

Sample Code:
from tblfaker import TableFaker

faker = TableFaker(locale="ja_JP")

for row in faker.generate(["name", "address"], rows=4).as_tuple():
    print(row)
Output:
Row(name='工藤 健一', address='宮崎県武蔵村山市六番町19丁目15番11号')
Row(name='井上 聡太郎', address='愛媛県長生郡白子町豊町33丁目7番20号 戸島コート620')
Row(name='大垣 美加子', address='京都府山武郡芝山町三ノ輪34丁目15番8号 クレスト所野560')
Row(name='宇野 くみ子', address='宮城県八街市西浅草20丁目24番6号')

Generate data in other data formats

Generate data in dict

Sample Code:
from tblfaker import TableFaker
import json

faker = TableFaker(seed=1)

print(json.dumps(faker.generate(["name", "address"], rows=2, table_name="dict").as_dict(), indent=4))
Output:
{
    "dict": [
        {
            "name": "Ryan Gallagher",
            "address": "6317 Mary Light\nSmithview, HI 13900"
        },
        {
            "name": "Amanda Johnson",
            "address": "3608 Samuel Mews Apt. 337\nHousebury, WA 13608"
        }
    ]
}

Generate data in pandas.DataFrame

Sample Code:
from tblfaker import TableFaker

faker = TableFaker(seed=seed)

print(faker.generate(["name", "address"], rows=4).as_dataframe())
Output:
               name                                            address
0    Ryan Gallagher               6317 Mary Light\nSmithview, HI 13900
1    Amanda Johnson     3608 Samuel Mews Apt. 337\nHousebury, WA 13608
2      Willie Heath          868 Santiago Grove\nNicolehaven, NJ 05026
3  Dr. Jared Ortega  517 Rodriguez Divide Suite 570\nWest Melinda, ...

Installation

pip install tblfaker

Dependencies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tblfaker-0.2.4.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

tblfaker-0.2.4-py3-none-any.whl (6.4 kB view details)

Uploaded Python 3

File details

Details for the file tblfaker-0.2.4.tar.gz.

File metadata

  • Download URL: tblfaker-0.2.4.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for tblfaker-0.2.4.tar.gz
Algorithm Hash digest
SHA256 3da3b13cfee632a20608b5854c9a40665c0e23d47db59b1f88ea0c3a0beb6fe2
MD5 a869e48feb907c697c0ac325c5cba6d8
BLAKE2b-256 5a8f1a0d4edf2e089b2b512921b7d221621f8d45f1e52c4ccef9abd8de7b6c7d

See more details on using hashes here.

File details

Details for the file tblfaker-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: tblfaker-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 6.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for tblfaker-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a86cd6ac0f539ede244f0c589b2860c0b46f85a4a1e0682d080e42546843c521
MD5 f3effdbe1d819fa840d92f46bdfca126
BLAKE2b-256 86ab809096eec419f2f1e574122c5537b2ee9e61bd6acb06740a4fcc43ecf6fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page