Skip to main content

Technical charts with signals

Project description

TechSig

  • Package to get technical indicators for given market data based on which Bull and Bear signals are generated.
  • This enables a non finance background person get the insights of the stock market technicalities in an understandable language.
  • Function to get the market data is also provided.
  • Plot are provided for all the techncial indicators which can help analyse the data better.

Note-

All investments, financial opinions expressed by techsig are from personal research and experience of the authors and are intended as educational material.

Author-

  • Aayush Talekar
  • Saloni Jaitly

How to import the package

from techsig.techsig import *

Function description

get_data(ticker, start_date, end_date):

Import daily market data :param ticker: ticker name according to National Stock Exchange :param start_date: format 'yyyy-mm-dd' :param end_date: format 'yyyy-mm-dd' :return: pandas.DataFrame() : OHCLV data on a daily frequency

moving_average(df, exponential=False, simple=False, plot=False, signal=False):

Calculate simple and exponential moving average (ma) for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param exponential: Boolean: if True, exponential ma is displayed :param simple: Boolean: if True, simple ma is displayed :param plot: Boolean: if True, closing price with ma is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame() : moving average of 5 days, 10 days, 20 days, 50 days, 100 days and 200 days

MACD(df, a=12, b=26, c=9, signal=False, plot=False):

```
Calculate moving average convergence divergence (MACD) for given data
:param df: pandas.DataFrame() :market data downloaded from get_data()
:param a: number of periods for moving average fast line: default = 12
:param b: number of periods for moving average slow line: default = 26
:param c: number of periods for macd signal line: default = 9
:param plot: Boolean: if True, closing price with MACD is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame() : MA_Fast, MA_Slow, MACD, Signal and Positions are returned
```

RSI (df, time_window=14, signal=False, plot=False):

```
Calculate relative strength index (RSI) for given data
:param df: pandas.DataFrame() :market data downloaded from get_data()
:param time_window: number of periods for RSI : default = 14
:param plot: Boolean: if True, closing price with RSI is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame() : RSI and Position is returned
```

IchimokuCloud(df, plot=False):

Calculate Ichimoku Clouds for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param plot: Boolean: if True, closing price with Ichimoku Clouds are plotted :return: pandas.DataFrame(): Conv_line, Base_line, Lead_span_A, Lead_span_B and Lagging span

ADX(df, trend=False, plot=False):

Calculate average directional index for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param trend: Boolean: if True, strength of the trend is returned :param plot: Boolean: if True, closing price with ADX is plotted :return: pandas.DataFrame(): ADX, Positive Directional Index and Negative Directional Index

ATR(DF,n=14, plot=False):

Calculate average true range (ATR) for given data :param DF: pandas.DataFrame() :market data downloaded from get_data() :param n: number of periods for ATR: default = 14 :param plot: Boolean: if True, closing price with ATR is plotted :return: pandas.DataFrame(): ATR

stochastic_oscillator(df, signal=False, plot=False):

```
Calculate stochastic oscillator %K and %D for given data.    
:param df: pandas.DataFrame() :market data downloaded from get_data()
:param plot: Boolean: if True, closing price with stochastic oscillator is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): %K and %D values
```

OBV(DF, plot=False, signal=False):

```
Calculate on balance volume (OBV) for given data
:param DF: pandas.DataFrame() :market data downloaded from get_data()
:param plot: Boolean: if True, closing price with OBV is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): %K and %D values
```

ppsr(df):

```
Calculate Pivot Points, Supports and Resistances for given data
:param df: pandas.DataFrame() :market data downloaded from get_data()
:return: pandas.DataFrame() : Pivot Points, Resistances and Supports
```

semideviation(df):

```
Calculate semi deviation for given close price
:param df: pandas.DataFrame(): close price of data
:return: float: value of semi deviation
```

meandeviation(df):

```
Calculate mean deviation for given close price
:param df: pandas.DataFrame(): close price of data
:return: float: value of mean deviation
```

standard_deviation(df, n=21):

```
Calculate standard Deviation for given data.
:param df: pandas.DataFrame(): close price of data
:param n: number of periods: default = 21
:return: pandas.DataFrame(): moving standard deviations
```

TSI(df, r=25, s=13, c=9, signal=False, plot=False):

```
Calculate True Strength Index (TSI) for given data.
:param df: pandas.DataFrame(): market data downloaded from get_data()
:param r: time period for EMA_Fast: default = 25 
:param s: time period for EMA_SLow: default = 13
:param c: time period for Signal Line: default = 9
:param plot: Boolean: if True, closing price with TSI is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): Price Change(pc), Price Change Smoothed(pcs), Price Change Double Smooth(pcds), Absolute Price Change(apc),
Absolute Price Change Smoothed(apcs), Absolute Price Change Double Smooth(apcds), TSI and Signal
```

MFI(df, n=14, signal = False, plot=False):

```
Calculate Money Flow Index(MFI) for given data.
:param df: pandas.DataFrame(): market data downloaded from get_data()
:param n: number of periods for MFI: default = 14
:param plot: Boolean: if True, closing price with MFI is plotted
:param signal: Boolean: if True, bullish/bearish signals are returned
:return: pandas.DataFrame(): Typical Price, Money Flow, MFI
```

summ(data):

Calculate the summary of the latest date :param df: pandas.DataFrame(): market data downloaded from get_data() :return: pandas.DataFrame(): Three dataframes are returned viz. Moving Average, Technical Indicators and Pivot Points

sentiment_signal(data):

Analysing the overall sentiment based on techncial indicators :param df: pandas.DataFrame(): market data downloaded from get_data() :return: pandas.DataFrame(): bull/bear/neutral signal of the technical indicator

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

techsig-1.0.1.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

techsig-1.0.1-py3-none-any.whl (10.6 kB view details)

Uploaded Python 3

File details

Details for the file techsig-1.0.1.tar.gz.

File metadata

  • Download URL: techsig-1.0.1.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for techsig-1.0.1.tar.gz
Algorithm Hash digest
SHA256 0e201a9380f711ed35a043db653f967457cfabb1961549c97f7b4df7420631bf
MD5 a27224ff5729733fcc01c55ebfaa3d31
BLAKE2b-256 8f5b28a45a38091dccd516fc9d67e5a89ab600a85f5cce558f72b58e496c9c0f

See more details on using hashes here.

File details

Details for the file techsig-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: techsig-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 10.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for techsig-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 72f46683e205ca04cb8110a8431c8d183866af42f2589ac88396712eccedef80
MD5 154a0c683f36e9b254fa59eec1b969d8
BLAKE2b-256 ff654f72e3f07ae21847a11258e626d4b0dfbc7ee74670a71c7c4604b340a511

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page