Skip to main content

Technical charts with signals

Project description

TechSig

  • Package to get technical indicators for given market data based on which Bull and Bear signals are generated.
  • This enables a non finance background person get the insights of the stock market technicalities in an understandable language.
  • Function to get the market data is also provided.
  • Plot are provided for all the techncial indicators which can help analyse the data better.

Note-

All investments, financial opinions expressed by techsig are from personal research and experience of the authors and are intended as educational material.

Author-

  • Aayush Talekar
  • Saloni Jaitly

How to import the package-

from techsig.techsig import *

Function description

get_data(ticker, start_date, end_date):

Import daily market data :param ticker: ticker name according to National Stock Exchange :param start_date: format 'yyyy-mm-dd' :param end_date: format 'yyyy-mm-dd' :return: pandas.DataFrame() : OHCLV data on a daily frequency

moving_average(df, exponential=False, simple=False, plot=False, signal=False):

Calculate simple and exponential moving average (ma) for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param exponential: Boolean: if True, exponential ma is displayed :param simple: Boolean: if True, simple ma is displayed :param plot: Boolean: if True, closing price with ma is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame() : moving average of 5 days, 10 days, 20 days, 50 days, 100 days and 200 days

MACD(df, a=12, b=26, c=9, signal=False, plot=False):

Calculate moving average convergence divergence (MACD) for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param a: number of periods for moving average fast line: default = 12 :param b: number of periods for moving average slow line: default = 26 :param c: number of periods for macd signal line: default = 9 :param plot: Boolean: if True, closing price with MACD is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame() : MA_Fast, MA_Slow, MACD, Signal and Positions are returned

RSI (df, time_window=14, signal=False, plot=False):

Calculate relative strength index (RSI) for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param time_window: number of periods for RSI : default = 14 :param plot: Boolean: if True, closing price with RSI is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame() : RSI and Position is returned

IchimokuCloud(df, plot=False):

Calculate Ichimoku Clouds for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param plot: Boolean: if True, closing price with Ichimoku Clouds are plotted :return: pandas.DataFrame(): Conv_line, Base_line, Lead_span_A, Lead_span_B and Lagging span

ADX(df, trend=False, plot=False):

Calculate average directional index for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :param trend: Boolean: if True, strength of the trend is returned :param plot: Boolean: if True, closing price with ADX is plotted :return: pandas.DataFrame(): ADX, Positive Directional Index and Negative Directional Index

ATR(DF,n=14, plot=False):

Calculate average true range (ATR) for given data :param DF: pandas.DataFrame() :market data downloaded from get_data() :param n: number of periods for ATR: default = 14 :param plot: Boolean: if True, closing price with ATR is plotted :return: pandas.DataFrame(): ATR

stochastic_oscillator(df, signal=False, plot=False):

Calculate stochastic oscillator %K and %D for given data. :param df: pandas.DataFrame() :market data downloaded from get_data() :param plot: Boolean: if True, closing price with stochastic oscillator is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame(): %K and %D values

OBV(DF, plot=False, signal=False):

Calculate on balance volume (OBV) for given data :param DF: pandas.DataFrame() :market data downloaded from get_data() :param plot: Boolean: if True, closing price with OBV is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame(): %K and %D values

ppsr(df):

Calculate Pivot Points, Supports and Resistances for given data :param df: pandas.DataFrame() :market data downloaded from get_data() :return: pandas.DataFrame() : Pivot Points, Resistances and Supports

semideviation(df):

Calculate semi deviation for given close price :param df: pandas.DataFrame(): close price of data :return: float: value of semi deviation

meandeviation(df):

Calculate mean deviation for given close price :param df: pandas.DataFrame(): close price of data :return: float: value of mean deviation

standard_deviation(df, n=21):

Calculate standard Deviation for given data. :param df: pandas.DataFrame(): close price of data :param n: number of periods: default = 21 :return: pandas.DataFrame(): moving standard deviations

TSI(df, r=25, s=13, c=9, signal=False, plot=False):

Calculate True Strength Index (TSI) for given data. :param df: pandas.DataFrame(): market data downloaded from get_data() :param r: time period for EMA_Fast: default = 25 :param s: time period for EMA_SLow: default = 13 :param c: time period for Signal Line: default = 9 :param plot: Boolean: if True, closing price with TSI is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame(): Price Change(pc), Price Change Smoothed(pcs), Price Change Double Smooth(pcds), Absolute Price Change(apc), Absolute Price Change Smoothed(apcs), Absolute Price Change Double Smooth(apcds), TSI and Signal

MFI(df, n=14, signal = False, plot=False):

Calculate Money Flow Index(MFI) for given data. :param df: pandas.DataFrame(): market data downloaded from get_data() :param n: number of periods for MFI: default = 14 :param plot: Boolean: if True, closing price with MFI is plotted :param signal: Boolean: if True, bullish/bearish signals are returned :return: pandas.DataFrame(): Typical Price, Money Flow, MFI

summ(data):

Calculate the summary of the latest date :param df: pandas.DataFrame(): market data downloaded from get_data() :return: pandas.DataFrame(): Three dataframes are returned viz. Moving Average, Technical Indicators and Pivot Points

sentiment_signal(data):

Analysing the overall sentiment based on techncial indicators :param df: pandas.DataFrame(): market data downloaded from get_data() :return: pandas.DataFrame(): bull/bear/neutral signal of the technical indicator

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

techsig-1.0.2.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

techsig-1.0.2-py3-none-any.whl (10.5 kB view details)

Uploaded Python 3

File details

Details for the file techsig-1.0.2.tar.gz.

File metadata

  • Download URL: techsig-1.0.2.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for techsig-1.0.2.tar.gz
Algorithm Hash digest
SHA256 20808b8113dfa8c530f19e9891a6d0ce8277a73602018b9e57d848324c4e3fd9
MD5 b8d169bae9fa2fd57ae2257aabe58069
BLAKE2b-256 30acd75ec6da79c38227878f9c7658efb07dbd1856284e3deac3d58ed6fc37fd

See more details on using hashes here.

File details

Details for the file techsig-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: techsig-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 10.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for techsig-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 77d2f66e9248a5732ed3c73e75a4e79b0fc30556bcf5d4cead4055bd6644cba8
MD5 9821a0651129e310c4b88c027137d99c
BLAKE2b-256 9956653233fb505f3367646fd9e29027b97837428fc7921cb779c33edd0d309b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page