Skip to main content

packagename placeholder

Project description

English | 简体中文

TensorCircuit is the next generation of quantum circuit simulators with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks and is machine learning backend agnostic. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms.

Getting Started

Please begin with Quick Start.

For more information and introductions, please refer to helpful example scripts and full documentation. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc
c = tc.Circuit(2)
c.H(0)
c.CNOT(0,1)
c.rx(1, theta=0.2)
print(c.wavefunction())
print(c.expectation_ps(z=[0, 1]))
print(c.sample())
  • Runtime behavior customization:
tc.set_backend("tensorflow")
tc.set_dtype("complex128")
tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta):
    c = tc.Circuit(2)
    c.R(0, theta=theta, alpha=0.5, phi=0.8)
    return tc.backend.real(c.expectation((tc.gates.z(), [0])))

g = tc.backend.grad(forward)
g = tc.backend.jit(g)
theta = tc.array_to_tensor(1.0)
print(g(theta))

Install

The package is purely written in Python and can be obtained via pip as:

pip install tensorcircuit

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible, GPU support

  • Efficiency

    • Time: 10 to 10^6 times acceleration compared to tfq or qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions

    • API design: quantum for humans, less code, more power

Citing TensorCircuit

This project is released by Tencent Quantum Lab and is currently maintained by Shi-Xin Zhang with contributions from the lab and open source community.

If this project helps in your research, please cite our software whitepaper:

TensorCircuit: a Quantum Software Framework for the NISQ Era

which is also a good introduction for the software.

Contributing

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

Researches and Applications

DQAS

For the application of Differentiable Quantum Architecture Search, see applications. Reference paper: https://arxiv.org/pdf/2010.08561.pdf.

VQNHE

For the application of Variational Quantum-Neural Hybrid Eigensolver, see applications. Reference paper: https://arxiv.org/pdf/2106.05105.pdf and https://arxiv.org/pdf/2112.10380.pdf.

VQEX - MBL

For the application of VQEX on MBL phase identification, see the tutorial. Reference paper: https://arxiv.org/pdf/2111.13719.pdf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorcircuitx-0.2.2.dev20220706.tar.gz (203.7 kB view details)

Uploaded Source

Built Distribution

tensorcircuitx-0.2.2.dev20220706-py3-none-any.whl (206.1 kB view details)

Uploaded Python 3

File details

Details for the file tensorcircuitx-0.2.2.dev20220706.tar.gz.

File metadata

  • Download URL: tensorcircuitx-0.2.2.dev20220706.tar.gz
  • Upload date:
  • Size: 203.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.8.0

File hashes

Hashes for tensorcircuitx-0.2.2.dev20220706.tar.gz
Algorithm Hash digest
SHA256 8fce75dc75f052996860a1370f69c833e5dd7eaa85483253821dfa3e9ac36776
MD5 4c653e82eda72e17bdc61ae9a1a2fba7
BLAKE2b-256 50a50c7373ee4d2b6c00a5adaacc2e8c7949510638127e5347d755f9d048bd71

See more details on using hashes here.

File details

Details for the file tensorcircuitx-0.2.2.dev20220706-py3-none-any.whl.

File metadata

  • Download URL: tensorcircuitx-0.2.2.dev20220706-py3-none-any.whl
  • Upload date:
  • Size: 206.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.8.0

File hashes

Hashes for tensorcircuitx-0.2.2.dev20220706-py3-none-any.whl
Algorithm Hash digest
SHA256 2203dab5621de3d78308d9a80267e290e417da463cb993daa4d2d37c12788caf
MD5 26e1a06ad11112630153832c8e04553c
BLAKE2b-256 1d717c7711bc5ba3dc7bba70027c3e4ed806e035842bbe942027b4f106deb9ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page