Skip to main content

No project description provided

Project description

TensorDict

TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, shape operations, casting to device etc.

The main purpose of TensorDict is to make code-bases more readable and modular by abstracting away tailored operations:

for i, tensordict in enumerate(dataset):
    # the model reads and writes tensordicts
    tensordict = model(tensordict)
    loss = loss_module(tensordict)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

With this level of abstraction, one can recycle a training loop for highly heterogeneous task. Each individual step of the training loop (data collection and transform, model prediction, loss computation etc.) can be tailored to the use case at hand without impacting the others. For instance, the above example can be easily used across classification and segmentation tasks, among many others.

Installation

To install the latest stable version of tensordict, simply run

pip install tensordict

This will work with python 3.7 and upward as well as pytorch 1.12 and upward.

To enjoy the latest features, one can use

pip install tensordict-nightly

Features

General

A tensordict is primarily defined by its batch_size (or shape) and its key-value pairs:

from tensordict import TensorDict
import torch
tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])

The batch_size and the first dimensions of each of the tensors must be compliant. The tensors can be of any dtype and device. Optionally, one can restrict a tensordict to live on a dedicated device, which will send each tensor that is written there:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4], device="cuda:0")
tensordict["key 3"] = torch.randn(3, 4, device="cpu")
assert tensordict["key 3"].device is torch.device("cuda:0")

Tensor-like features

TensorDict objects can be indexed exactly like tensors. The resulting of indexing a TensorDict is another TensorDict containing tensors indexed along the required dimension:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
sub_tensordict = tensordict[..., :2]
assert sub_tensordict.shape == torch.Size([3, 2])
assert sub_tensordict["key 1"].shape == torch.Size([3, 2, 5])

Similarly, one can build tensordicts by stacking or concatenating single tensordicts:

tensordicts = [TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4]) for _ in range(2)]
stack_tensordict = torch.stack(tensordicts, 1)
assert stack_tensordict.shape == torch.Size([3, 2, 4])
assert stack_tensordict["key 1"].shape == torch.Size([3, 2, 4, 5])
cat_tensordict = torch.cat(tensordicts, 0)
assert cat_tensordict.shape == torch.Size([6, 4])
assert cat_tensordict["key 1"].shape == torch.Size([6, 4, 5])

TensorDict instances can also be reshaped, viewed, squeezed and unsqueezed:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
print(tensordict.view(-1))  # prints torch.Size([12])
print(tensordict.reshape(-1))  # prints torch.Size([12])
print(tensordict.unsqueeze(-1))  # prints torch.Size([3, 4, 1])

One can also send tensordict from device to device, place them in shared memory, clone them, update them in-place or not, split them, unbind them, expand them etc.

If a functionality is missing, it is easy to call it using apply() or apply_():

tensordict_uniform = tensordict.apply(lambda tensor: tensor.uniform_())

TensorDict for functional programming using FuncTorch

We also provide an API to use TensorDict in conjunction with FuncTorch. For instance, TensorDict makes it easy to concatenate model weights to do model ensembling:

from torch import nn
from tensordict import TensorDict
from copy import deepcopy
from tensordict.nn.functional_modules import FunctionalModule
import torch
from functorch import vmap
layer1 = nn.Linear(3, 4)
layer2 = nn.Linear(4, 4)
model1 = nn.Sequential(layer1, layer2)
model2 = deepcopy(model1)
# we represent the weights hierarchically
weights1 = TensorDict(model1.state_dict(), []).unflatten_keys(".")
weights2 = TensorDict(model2.state_dict(), []).unflatten_keys(".")
weights = torch.stack([weights1, weights2], 0)
fmodule, _ = FunctionalModule._create_from(model1)
# an input we'd like to pass through the model
x = torch.randn(10, 3)
y = vmap(fmodule, (0, None))(weights, x)
y.shape  # torch.Size([2, 10, 4])

First-class dimensions

Note: first-class dimensions are themselves experimental, you will need to install torch-nightly to try this out.

We also support use of first-class dimensions from functorch. Indexing a TensorDict with first-class dimensions will result in all items in the TensorDict being indexed in the same way. Once a TensorDict has been indexed with first-class dimensions, any new entries must themselves have been indexed in a compatible way. First-class dimensions can be added to any of the batch dimensions, since they are guaranteed to exist for all entries. You can call order directly on the TensorDict, or access items individually according to your need.

Here's a simple example. Create a TensorDict as usual

import torch
from functorch.dim import dims
from tensordict import TensorDict

td = TensorDict(
    {"mask": torch.randint(2, (10, 28, 28), dtype=torch.uint8)},
    batch_size=[10, 28, 28],
)

You can then index the TensorDict with first class dimensions as you would a tensor

batch, width, height, channel = dims(4)
td_fc = td[batch, width, height]

All entries of the TensorDict will now have been indexed in the same way

td_fc["mask"]
# tensor(..., dtype=torch.uint8)
# with dims=(batch, width, height, 0) sizes=(10, 28, 28, 1)

You can add new items provided they have compatible first class dimensions, i.e. the new item must have all of the first-class dimensions of the TensorDict, though the item can have additional first-class non-batch dimensions, and the remaining positional dimensions are compatible with the TensorDict's batch size.

td_fc["input"] = torch.rand(10, 28, 28, 3)[batch, width, height, channel]

You can now take advantage of first-class dimensions when accessing the items

(td_fc["input"] * td_fc["mask"]).mean(channel)

Or can call order on the TensorDict to arrange dimensions of all items

td_ordered = td_fc.order(batch, height, width)
torch.testing.assert_close(
    td_ordered["mask"], td_fc["mask"].order(batch, height, width)
)

Nesting TensorDicts

It is possible to nest tensordict and switch easily between hierarchical and flat representations. For instance, the following code will result in a single-level tensordict with keys "key 1" and "key 2.sub-key":

>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": TensorDict({"sub-key": torch.randn(3, 4, 5, 6)}, [3, 4, 5])
... }, batch_size=[3, 4])
>>> tensordict = tensordict.unflatten_keys(separator=".")

Disclaimer

TensorDict is at the alpha-stage, meaning that there may be bc-breaking changes introduced at any moment without warranty. Hopefully that should not happen too often, as the current roadmap mostly involves adding new features and building compatibility with the broader pytorch ecosystem.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensordict_nightly-2022.11.5-py310-none-any.whl (77.8 kB view details)

Uploaded Python 3.10

tensordict_nightly-2022.11.5-py39-none-any.whl (77.8 kB view details)

Uploaded Python 3.9

tensordict_nightly-2022.11.5-py38-none-any.whl (77.8 kB view details)

Uploaded Python 3.8

tensordict_nightly-2022.11.5-py37-none-any.whl (77.8 kB view details)

Uploaded Python 3.7

File details

Details for the file tensordict_nightly-2022.11.5-py310-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.5-py310-none-any.whl
  • Upload date:
  • Size: 77.8 kB
  • Tags: Python 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.5-py310-none-any.whl
Algorithm Hash digest
SHA256 18d4177928c8f7ae504b1a4116b0bb663501c42cf1440b27f520b9d0cac458f2
MD5 267b2ae3c41586780ff26f12a6a43650
BLAKE2b-256 7cab32b20eb2e951eb2eb7636885d793aa8a7eaa992d2807466c80a8d9c7ca27

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.5-py39-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.5-py39-none-any.whl
  • Upload date:
  • Size: 77.8 kB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.5-py39-none-any.whl
Algorithm Hash digest
SHA256 8368dbfc873e7c4e519cef0f75e2d5394f3b2d00a175f35bfd2d2df1716091be
MD5 258c39f628fb6c54b0e05c29e1fd1267
BLAKE2b-256 97aff1e7d95e01d09c643178f79cadccb6d1a4c08ea5584387809e1d29bf9779

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.5-py38-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.5-py38-none-any.whl
  • Upload date:
  • Size: 77.8 kB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.5-py38-none-any.whl
Algorithm Hash digest
SHA256 db07f7d1f639d4aebdc05b6895f8eba18fc5bd9b9b26d571db88ca5f576cd6a3
MD5 7c71c44c5f4abc27e9f6eb9bacd6793d
BLAKE2b-256 924fa41cc5965536f7efad0d4eef304f52f5614b4af378b811779b0c0434d47c

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.5-py37-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.5-py37-none-any.whl
  • Upload date:
  • Size: 77.8 kB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.5-py37-none-any.whl
Algorithm Hash digest
SHA256 1f8d356552dd7e968cf544dff8ca01d99ed7d0cc0899b0a9bf8c4218c3476fc5
MD5 6c60b017ff4c9541cba71adc04855cce
BLAKE2b-256 19e9a452239a5c138e697fce14ed985c4b37a7bbcab64f462c97c6956c5ebb49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page