Skip to main content

No project description provided

Project description

Docs - GitHub.io Discord Shield Benchmarks Python version GitHub license pypi version pypi nightly version Downloads Downloads codecov circleci Conda - Platform Conda (channel only)

TensorDict

Installation | General features | Tensor-like features | Distributed capabilities | TensorDict for functional programming | **TensorDict for parameter serialization | Lazy preallocation | Nesting TensorDicts | TensorClass

TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, shape operations, casting to device or point-to-point communication in distributed settings. Whenever you need to execute an operation over a batch of tensors, TensorDict is there to help you.

The primary goal of TensorDict is to make your code-bases more readable, compact, and modular. It abstracts away tailored operations, making your code less error-prone as it takes care of dispatching the operation on the leaves for you.

Using tensordict primitives, most supervised training loops can be rewritten in a generic way:

for i, data in enumerate(dataset):
    # the model reads and writes tensordicts
    data = model(data)
    loss = loss_module(data)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

With this level of abstraction, one can recycle a training loop for highly heterogeneous task. Each individual step of the training loop (data collection and transform, model prediction, loss computation etc.) can be tailored to the use case at hand without impacting the others. For instance, the above example can be easily used across classification and segmentation tasks, among many others.

Features

General principles

Unlike other pytrees, TensorDict carries metadata that make it easy to query the state of the container. The main metadata are the batch_size (also referred as shape), the device, the shared status (is_memmap or is_shared), the dimension names and the lock status.

A tensordict is primarily defined by its batch_size (or shape) and its key-value pairs:

>>> from tensordict import TensorDict
>>> import torch
>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])

The batch_size and the first dimensions of each of the tensors must be compliant. The tensors can be of any dtype and device.

Optionally, one can restrict a tensordict to live on a dedicated device, which will send each tensor that is written there:

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4], device="cuda:0")

When a tensordict has a device, all write operations will cast the tensor to the TensorDict device:

>>> data["key 3"] = torch.randn(3, 4, device="cpu")
>>> assert data["key 3"].device is torch.device("cuda:0")

Once the device is set, it can be cleared with the clear_device_ method.

TensorDict as a specialized dictionary

TensorDict possesses all the basic features of a dictionary such as clear, copy, fromkeys, get, items, keys, pop, popitem, setdefault, update and values.

But that is not all, you can also store nested values in a tensordict:

>>> data["nested", "key"] = torch.zeros(3, 4) # the batch-size must match

and any nested tuple structure will be unravelled to make it easy to read code and write ops programmatically:

>>> data["nested", ("supernested", ("key",))] = torch.zeros(3, 4) # the batch-size must match
>>> assert (data["nested", "supernested", "key"] == 0).all()
>>> assert (("nested",), "supernested", (("key",),)) in data.keys(include_nested=True)  # this works too!

You can also store non-tensor data in tensordicts:

>>> data = TensorDict({"a-tensor": torch.randn(1, 2)}, batch_size=[1, 2])
>>> data["non-tensor"] = "a string!"
>>> assert data["non-tensor"] == "a string!"

Tensor-like features

[Nightly feature] TensorDict supports many common point-wise arithmetic operations such as == or +, += and similar (provided that the underlying tensors support the said operation):

>>> td = TensorDict.fromkeys(["a", "b", "c"], 0)
>>> td += 1
>>> assert (td==1).all()

TensorDict objects can be indexed exactly like tensors. The resulting of indexing a TensorDict is another TensorDict containing tensors indexed along the required dimension:

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])
>>> sub_tensordict = data[..., :2]
>>> assert sub_tensordict.shape == torch.Size([3, 2])
>>> assert sub_tensordict["key 1"].shape == torch.Size([3, 2, 5])

Similarly, one can build tensordicts by stacking or concatenating single tensordicts:

>>> tensordicts = [TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4]) for _ in range(2)]
>>> stack_tensordict = torch.stack(tensordicts, 1)
>>> assert stack_tensordict.shape == torch.Size([3, 2, 4])
>>> assert stack_tensordict["key 1"].shape == torch.Size([3, 2, 4, 5])
>>> cat_tensordict = torch.cat(tensordicts, 0)
>>> assert cat_tensordict.shape == torch.Size([6, 4])
>>> assert cat_tensordict["key 1"].shape == torch.Size([6, 4, 5])

TensorDict instances can also be reshaped, viewed, squeezed and unsqueezed:

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])
>>> print(data.view(-1))
torch.Size([12])
>>> print(data.reshape(-1))
torch.Size([12])
>>> print(data.unsqueeze(-1))
torch.Size([3, 4, 1])

One can also send tensordict from device to device, place them in shared memory, clone them, update them in-place or not, split them, unbind them, expand them etc.

If a functionality is missing, it is easy to call it using apply() or apply_():

tensordict_uniform = data.apply(lambda tensor: tensor.uniform_())

apply() can also be great to filter a tensordict, for instance:

data = TensorDict({"a": torch.tensor(1.0, dtype=torch.float), "b": torch.tensor(1, dtype=torch.int64)}, [])
data_float = data.apply(lambda x: x if x.dtype == torch.float else None) # contains only the "a" key
assert "b" not in data_float

Distributed capabilities

Complex data structures can be cumbersome to synchronize in distributed settings. tensordict solves that problem with synchronous and asynchronous helper methods such as recv, irecv, send and isend that behave like their torch.distributed counterparts:

>>> # on all workers
>>> data = TensorDict({"a": torch.zeros(()), ("b", "c"): torch.ones(())}, [])
>>> # on worker 1
>>> data.isend(dst=0)
>>> # on worker 0
>>> data.irecv(src=1)

When nodes share a common scratch space, the MemmapTensor backend can be used to seamlessly send, receive and read a huge amount of data.

TensorDict for functional programming

We also provide an API to use TensorDict in conjunction with FuncTorch. For instance, TensorDict makes it easy to concatenate model weights to do model ensembling:

>>> from torch import nn
>>> from tensordict import TensorDict
>>> import torch
>>> from torch import vmap
>>> layer1 = nn.Linear(3, 4)
>>> layer2 = nn.Linear(4, 4)
>>> model = nn.Sequential(layer1, layer2)
>>> params = TensorDict.from_module(model)
>>> # we represent the weights hierarchically
>>> weights1 = TensorDict(layer1.state_dict(), []).unflatten_keys(".")
>>> weights2 = TensorDict(layer2.state_dict(), []).unflatten_keys(".")
>>> assert (params == TensorDict({"0": weights1, "1": weights2}, [])).all()
>>> # Let's use our functional module
>>> x = torch.randn(10, 3)
>>> with params.to_module(model):
...     out = model(x)
>>> # an ensemble of models: we stack params along the first dimension...
>>> params_stack = torch.stack([params, params], 0)
>>> # ... and use it as an input we'd like to pass through the model
>>> def func(x, params):
...     with params.to_module(model):
...         return model(x)
>>> y = vmap(func, (None, 0))(x, params_stack)
>>> print(y.shape)
torch.Size([2, 10, 4])

Moreover, tensordict modules are compatible with torch.fx and (soon) torch.compile, which means that you can get the best of both worlds: a codebase that is both readable and future-proof as well as efficient and portable!

TensorDict for parameter serialization and building datasets

TensorDict offers an API for parameter serialization that can be >3x faster than regular calls to torch.save(state_dict). Moreover, because tensors will be saved independently on disk, you can deserialize your checkpoint on an arbitrary slice of the model.

>>> model = nn.Sequential(nn.Linear(3, 4), nn.Linear(4, 3))
>>> params = TensorDict.from_module(model)
>>> params.memmap("/path/to/saved/folder/", num_threads=16)  # adjust num_threads for speed
>>> # load params
>>> params = TensorDict.load_memmap("/path/to/saved/folder/", num_threads=16)
>>> params.to_module(model)  # load onto model
>>> params["0"].to_module(model[0])  # load on a slice of the model
>>> # in the latter case we could also have loaded only the slice we needed
>>> params0 = TensorDict.load_memmap("/path/to/saved/folder/0", num_threads=16)
>>> params0.to_module(model[0])  # load on a slice of the model

The same functionality can be used to access data in a dataset stored on disk. Soring a single contiguous tensor on disk accessed through the tensordict.MemoryMappedTensor primitive and reading slices of it is not only much faster than loading single files one at a time but it's also easier and safer (because there is no pickling or third-party library involved):

# allocate memory of the dataset on disk
data = TensorDict({
    "images": torch.zeros((128, 128, 3), dtype=torch.uint8),
    "labels": torch.zeros((), dtype=torch.int)}, batch_size=[])
data = data.expand(1000000)
data = data.memmap_like("/path/to/dataset")
# ==> Fill your dataset here
# Let's get 3 items of our dataset:
data[torch.tensor([1, 10000, 500000])]  # This is much faster than loading the 3 images independently

Preprocessing with TensorDict.map

Preprocessing huge contiguous (or not!) datasets can be done via TensorDict.map which will dispatch a task to various workers:

import torch
from tensordict import TensorDict, MemoryMappedTensor
import tempfile

def process_data(data):
    images = data.get("images").flip(-2).clone()
    labels = data.get("labels") // 10
    # we update the td inplace
    data.set_("images", images)  # flip image
    data.set_("labels", labels)  # cluster labels

if __name__ == "__main__":
    # create data_preproc here
    data_preproc = data.map(process_data, num_workers=4, chunksize=0, pbar=True)  # process 1 images at a time

Lazy preallocation

Pre-allocating tensors can be cumbersome and hard to scale if the list of preallocated items varies according to the script configuration. TensorDict solves this in an elegant way. Assume you are working with a function foo() -> TensorDict, e.g.

def foo():
    data = TensorDict({}, batch_size=[])
    data["a"] = torch.randn(3)
    data["b"] = TensorDict({"c": torch.zeros(2)}, batch_size=[])
    return data

and you would like to call this function repeatedly. You could do this in two ways. The first would simply be to stack the calls to the function:

data = torch.stack([foo() for _ in range(N)])

However, you could also choose to preallocate the tensordict:

data = TensorDict({}, batch_size=[N])
for i in range(N):
    data[i] = foo()

which also results in a tensordict (when N = 10)

TensorDict(
    fields={
        a: Tensor(torch.Size([10, 3]), dtype=torch.float32),
        b: TensorDict(
            fields={
                c: Tensor(torch.Size([10, 2]), dtype=torch.float32)},
            batch_size=torch.Size([10]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)

When i==0, your empty tensordict will automatically be populated with empty tensors of batch-size N. After that, updates will be written in-place. Note that this would also work with a shuffled series of indices (pre-allocation does not require you to go through the tensordict in an ordered fashion).

Nesting TensorDicts

It is possible to nest tensordict. The only requirement is that the sub-tensordict should be indexable under the parent tensordict, i.e. its batch size should match (but could be longer than) the parent batch size.

We can switch easily between hierarchical and flat representations. For instance, the following code will result in a single-level tensordict with keys "key 1" and "key 2.sub-key":

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": TensorDict({"sub-key": torch.randn(3, 4, 5, 6)}, batch_size=[3, 4, 5])
... }, batch_size=[3, 4])
>>> tensordict_flatten = data.flatten_keys(separator=".")

Accessing nested tensordicts can be achieved with a single index:

>>> sub_value = data["key 2", "sub-key"]

TensorClass

Content flexibility comes at the cost of predictability. In some cases, developers may be looking for data structure with a more explicit behavior. tensordict provides a dataclass-like decorator that allows for the creation of custom dataclasses that support the tensordict operations:

>>> from tensordict.prototype import tensorclass
>>> import torch
>>>
>>> @tensorclass
... class MyData:
...    image: torch.Tensor
...    mask: torch.Tensor
...    label: torch.Tensor
...
...    def mask_image(self):
...        return self.image[self.mask.expand_as(self.image)].view(*self.batch_size, -1)
...
...    def select_label(self, label):
...        return self[self.label == label]
...
>>> images = torch.randn(100, 3, 64, 64)
>>> label = torch.randint(10, (100,))
>>> mask = torch.zeros(1, 64, 64, dtype=torch.bool).bernoulli_().expand(100, 1, 64, 64)
>>>
>>> data = MyData(images, mask, label=label, batch_size=[100])
>>>
>>> print(data.select_label(1))
MyData(
    image=Tensor(torch.Size([11, 3, 64, 64]), dtype=torch.float32),
    label=Tensor(torch.Size([11]), dtype=torch.int64),
    mask=Tensor(torch.Size([11, 1, 64, 64]), dtype=torch.bool),
    batch_size=torch.Size([11]),
    device=None,
    is_shared=False)
>>> print(data.mask_image().shape)
torch.Size([100, 6117])
>>> print(data.reshape(10, 10))
MyData(
    image=Tensor(torch.Size([10, 10, 3, 64, 64]), dtype=torch.float32),
    label=Tensor(torch.Size([10, 10]), dtype=torch.int64),
    mask=Tensor(torch.Size([10, 10, 1, 64, 64]), dtype=torch.bool),
    batch_size=torch.Size([10, 10]),
    device=None,
    is_shared=False)

As this example shows, one can write a specific data structures with dedicated methods while still enjoying the TensorDict artifacts such as shape operations (e.g. reshape or permutations), data manipulation (indexing, cat and stack) or calling arbitrary functions through the apply method (and many more).

Tensorclasses support nesting and, in fact, all the TensorDict features.

Installation

With Pip:

To install the latest stable version of tensordict, simply run

pip install tensordict

This will work with Python 3.7 and upward as well as PyTorch 1.12 and upward.

To enjoy the latest features, one can use

pip install tensordict-nightly

With Conda:

Install tensordict from conda-forge channel.

conda install -c conda-forge tensordict

Citation

If you're using TensorDict, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Disclaimer

TensorDict is at the beta-stage, meaning that there may be bc-breaking changes introduced, but they should come with a warranty. Hopefully these should not happen too often, as the current roadmap mostly involves adding new features and building compatibility with the broader PyTorch ecosystem.

License

TensorDict is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensordict_nightly-2024.4.26-cp311-cp311-win_amd64.whl (285.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

tensordict_nightly-2024.4.26-cp310-cp310-win_amd64.whl (285.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

tensordict_nightly-2024.4.26-cp39-cp39-win_amd64.whl (285.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

tensordict_nightly-2024.4.26-cp38-cp38-win_amd64.whl (285.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file tensordict_nightly-2024.4.26-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.4.26-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9a781d73ff7695b5dae3558bdc04e73cf2f7804ad8b9ea13d376f683771f95a4
MD5 99f4c4569e88121e3b9f7aae361f916a
BLAKE2b-256 1aa69492bc445a2d2e51a2859244abf307a3051e51f295377ed5c40bc3c2fbf9

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.4.26-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.4.26-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d3fbc99f6a04eb9747f5c151319f3433d4bde8c55408b80dc3cb207d6ed467a6
MD5 7b68d7d43e0af1c93db60042c7d126b9
BLAKE2b-256 11b5c83e028023405e0466622381791cee3440aab4029d9c9958c01bc1e98975

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.4.26-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.4.26-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 04ba0674aab9c27fba74777b063b20caa5ffde256fed9116e16299949e37a20c
MD5 7bd2ca1c352d6a4a5d84169c9465ff56
BLAKE2b-256 9ccad57575913c0100f7a1d32a7978cec4606910081adb247427fe5b44de2188

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.4.26-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.4.26-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8d96fc351e7692b6812acb6187f439fb03d66971936b3b0c62e6de6358f91487
MD5 49732c764b1aa0214bc5d588a030b8f3
BLAKE2b-256 dbeace6a7ff0a9fb0f5bd265c29902c2d978cbc17aeb01d9dfe25072a9678b24

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.4.26-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.4.26-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 61d95f745fa3ad32d80d3553d5b103de2a9c19593bb44af113fa84a12458c89d
MD5 0a45df52cd1433163ea563ddebfc184a
BLAKE2b-256 d20cdc2aad3ec41cb995c96b3b1d7336f452cb4e6e6c18c3499509122710f650

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.4.26-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.4.26-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 72bec3e636f8f8b41ddcb7f61d2d2a58f17c2cf4c996e6b35851278b4cf0d479
MD5 2afc16544657869350241f1ac89ac09b
BLAKE2b-256 e9dc71c33120fb92f1e7cd448d6ae76b5c2f54323895458709d9836ca0b8c8a3

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.4.26-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.4.26-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a94ca2a3abb20b73fa8b26f2922f951b6320e7642b0d0e681e09f04ba5ca146e
MD5 24e8a66277bb22fc0c47355c92eb59fb
BLAKE2b-256 e42ad81ec780fae93b36171ee436d529910b23b4d88524332bfa298232846a68

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.4.26-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.4.26-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ec66a67cd9ca858afe433d1d6bf81c64d7b61488a3f0e0ef9b75be944d05b458
MD5 c8b67c97e0839fbdf1c7b8d88e68142c
BLAKE2b-256 0597caa021d7ad8f04a1fce4eb499502170495d4a40013b51a77709b1a3b1906

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page