Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp39-cp39-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp38-cp38-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp37-cp37m-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp36-cp36m-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0567329a3a4e62bf2859a8b885d48a8d5d16fb57045affb2222f5a297a8d2525
MD5 ef41644d8a620dc5a5b686f1e1db03dc
BLAKE2b-256 819e966886a6a1a14e4fb19108a6db458f1f9b815d1cc04815925c2fd13c05cf

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7127ba049e3486c01fce7bf8b6fef7341cd58774d5b70cac2e10245b00fa387f
MD5 ed63147bac5174b94810194129bd57f7
BLAKE2b-256 9899a488802ae16ed6405be737678cd5cfd5f0aaf37cedb6a3fe37aedbba42ff

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ab7759246ce21a9cfbe48c68cb4547b5683555bbe3baada1643d89469a74605c
MD5 47350486ae9098309bb1ad53ec6a3d73
BLAKE2b-256 adabc3aec52cef0b2e3e01421a5d146c644715fd81db64d77f8a85579e358b8f

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 63ae351b3784e964502613b025ad6b76671a402d817e2f93c6b167762d2331fb
MD5 a5749eb91d68c22c1e1dbf6c5fefa92b
BLAKE2b-256 6d15f1ea8d5eee0f63786422204606dc3eac67181729b15e52c1b1c5427fa9e7

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f5fccda8d7230e73eb2301309c2d9379112096637413f5ba2823fbd00df480c4
MD5 11ef011e068090fe403c605a1fba86b7
BLAKE2b-256 45bbac830c7c881e07723267914f4005e3b6886db973344a05f105ba09d2b58d

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d03050e7ae22da6a3d98ce2ad423f72e26c02650e8b7f665a569316d8bc7314a
MD5 5e6f4e5c56fb89d060dafb3e87d086bc
BLAKE2b-256 9ad17cb8124af03a53bda802c05b40b5f8006ecab1bba428e6ef05dd2a3ba943

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 25ee3745b945d839210810529973bf0f7c6c07e4a37eff03d23fdd4129566782
MD5 88e7fb6d476b65cb79277808d82e5091
BLAKE2b-256 f30e2b3b48205e1b3dfdc7aad5179c8ae68f1cdd623189e9b788b8370284fc49

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d112b53741c085293abaea079a4a680e265f153630cb63b1dec3fa3af9651245
MD5 d554c91e77845b72f044ba19a69bbe72
BLAKE2b-256 749d6013900c8e7e4db4522845cfa1f21a85d7c985b0166dbd4ea5eb042e4b57

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 061b8ec91eff65f4a273670ed43b2913ba8eeac3e53a63793e54244f1840a402
MD5 c14ad0b97bd23989277a0b4274a86f6e
BLAKE2b-256 9eea9e160cbf338c3dca3cee584ce2366af66c7ebb97266bbaafd7a442bdd4ea

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1325f49407cce47a83a8f3c723213b4e9bac3cf5b7766b57f08be06d573ae2df
MD5 11991da078fb2de85135ac41c467281a
BLAKE2b-256 03431fe0cd66e4d736a51ebdb245c14fa1acb8313f1ce8082337bcff4b6b62cf

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 99174d11b39ac02477444bf1df48fbf2317a1f00f040ec945c4d9262938e08c3
MD5 27f9c56cad877c7a56e710b66de4f19e
BLAKE2b-256 3f763cdd347a1a6b6562e77abbf6d8829581fbe4108103be862e0c4d8d324611

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210430142411-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ab79042813c51185cc6a24b5057aaeff1548cd4a133cdf4e191caf4650543222
MD5 7e0ecf4a972bfad35451a7cb1397b1f7
BLAKE2b-256 ec72149d46831a168e6bbe711772f42a14f19f64dc015d94ecfe5d5992e9d366

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page