Generic explainability architecture for text machine learning models
Project description
Text Explainability
A generic explainability architecture for explaining text machine learning models.
Marcel Robeer, 2021
Installation
Install from PyPI via pip3 install text_explainability
. Alternatively, clone this repository and install via pip3 install -e .
or locally run python3 setup.py install
.
Example usage
Run lines in example_usage.py
to see an example of how the package can be used.
Maintenance
Contributors
- Marcel Robeer (
@m.j.robeer
) - Michiel Bron (
@mpbron-phd
)
Todo
Tasks yet to be done:
- Add data sampling methods (e.g. representative subset, prototypes, MMD-critic)
- Implement local post-hoc explanations:
- Implement Anchors
- Implement Foil Trees + ability to turn any output into a binary classification problem (fact-foil encodings)
- Implement global post-hoc explanations
- Add support for regression models
- More complex data augmentation
- Top-k replacement (e.g. according to LM / WordNet)
- Tokens to exclude from being changed
- Bag-of-words style replacements
- Add rule-based return type
- Write more tests
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
text_explainability-0.3.0.tar.gz
(10.5 kB
view hashes)
Built Distribution
Close
Hashes for text_explainability-0.3.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6861c142e5f29754507e04138b543d2ebdf7ac1f6ca9026313c069c8deeccb6e |
|
MD5 | 901efd44e8b7fde3849a7018a8a19ada |
|
BLAKE2b-256 | 6908f6ddfab99fa8d03f8fcb340094767a33971d3947796e49098bd5c3eb020b |
Close
Hashes for text_explainability-0.3.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 812e09d98011d7d0f5f44bfcb412cb90178b6ad6d953a2118237aff66ac2d463 |
|
MD5 | 18a24d611f00d693bc78ae824f9e744f |
|
BLAKE2b-256 | b2648ffd0ccf4a9a542de4842cd50916f567a270b45915f969b53f96d8f78887 |