it's implimentation of preceptron
Project description
tf-multilabelloss
how to use tf-multilabelloss
from multi_label_loss.multilabelloss import MultilabelLoss
predictions = Dense(len(num_class), activation="sigmoid")(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='adam', loss=MultilabelLoss(num_class),metrics=['binary_accuracy'])
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tf_multilabelloss-0.0.1.tar.gz
(14.0 kB
view details)
Built Distribution
File details
Details for the file tf_multilabelloss-0.0.1.tar.gz
.
File metadata
- Download URL: tf_multilabelloss-0.0.1.tar.gz
- Upload date:
- Size: 14.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60e2dd6a3e140431bbb761e0bd7afcf5ef0965c0bafdad08248d14d6640beffc |
|
MD5 | aa1faac937832da29a1f5df23621e898 |
|
BLAKE2b-256 | cae76126cc35cf7ecde2b9492b54ec8aaba0e9c5abc4f3ecd32dce4340cc6b4d |
File details
Details for the file tf_multilabelloss-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: tf_multilabelloss-0.0.1-py3-none-any.whl
- Upload date:
- Size: 14.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ab62280535ecd4d058262081fae162ebdea30bde490c12f2dc2eb5c3361581b |
|
MD5 | 8a511e78cfedbc68beab431384f873f4 |
|
BLAKE2b-256 | c8049d7aa1128cedf868f1a1e1663efdd1a7a4b5a09c3f224216fd80da19648f |