it's implimentation of preceptron
Project description
tf-multilabelloss
how to use tf-multilabelloss
from multi_label_loss.multilabelloss import MultilabelLoss
predictions = Dense(len(num_class), activation="sigmoid")(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='adam', loss=MultilabelLoss(num_class),metrics=['binary_accuracy'])
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tf_multilabelloss-0.0.3.tar.gz
(13.9 kB
view details)
Built Distribution
File details
Details for the file tf_multilabelloss-0.0.3.tar.gz
.
File metadata
- Download URL: tf_multilabelloss-0.0.3.tar.gz
- Upload date:
- Size: 13.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d5f602bc850c928cc96e3747101ee4ae0ec8253c1bb7a6c249d17253334cca1 |
|
MD5 | 3a6b01b898f412030479f5aad6881417 |
|
BLAKE2b-256 | 3c8f2fb3b9f2ea00d9df1a272c8163ccd1d7c7c8008f5f3644827c3c3fb0cfa0 |
File details
Details for the file tf_multilabelloss-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: tf_multilabelloss-0.0.3-py3-none-any.whl
- Upload date:
- Size: 14.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b1d5a3b96a2cfcb9a6d3287344e5cc1cfb92265632eaa0d673bbbc64d9ca020 |
|
MD5 | f5445f0f58c3ced291b1eae25dc43154 |
|
BLAKE2b-256 | 611a22324d26b81b522c1dd8d28af8bc3af86b2d619b98b9a98d6894b8fab98f |