Skip to main content

A robust, easy-to-deploy non-uniform Fast Fourier Transform in TensorFlow.

Project description

TF KB-NUFFT

GitHub | Build Status

Simple installation from pypi:

pip install tfkbnufft

About

This package is a verly early-stage and modest adaptation to TensorFlow of the torchkbnufft package written by Matthew Muckley for PyTorch. Please cite his work appropriately if you use this package.

Computation speed

The computation speeds are given in seconds, for a 256x256 image with a spokelength of 512 and 405 spokes. These numbers are not to be directly compared to those of torchkbnufft, since the computation is not the same. They are just to give a sense of the time required for computation.

Operation CPU GPU
Forward NUFFT 0.1676 0.0626
Adjoint NUFFT 0.7005 0.0635

To obtain these numbers for your machine, run the following commands, after installing this package:

pip install scikit-image Pillow
python profile_tfkbnufft.py

These numbers were obtained with a Quadro P5000.

References

  1. Fessler, J. A., & Sutton, B. P. (2003). Nonuniform fast Fourier transforms using min-max interpolation. IEEE transactions on signal processing, 51(2), 560-574.

  2. Beatty, P. J., Nishimura, D. G., & Pauly, J. M. (2005). Rapid gridding reconstruction with a minimal oversampling ratio. IEEE transactions on medical imaging, 24(6), 799-808.

  3. Feichtinger, H. G., Gr, K., & Strohmer, T. (1995). Efficient numerical methods in non-uniform sampling theory. Numerische Mathematik, 69(4), 423-440.

Citation

If you want to cite the package, you can use any of the following:

@conference{muckley:20:tah,
  author = {M. J. Muckley and R. Stern and T. Murrell and F. Knoll},
  title = {{TorchKbNufft}: A High-Level, Hardware-Agnostic Non-Uniform Fast Fourier Transform},
  booktitle = {ISMRM Workshop on Data Sampling \& Image Reconstruction},
  year = 2020
}

@misc{Muckley2019,
  author = {Muckley, M.J. et al.},
  title = {Torch KB-NUFFT},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/mmuckley/torchkbnufft}}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkbnufft-0.1.0.tar.gz (14.7 kB view details)

Uploaded Source

Built Distribution

tfkbnufft-0.1.0-py3-none-any.whl (19.0 kB view details)

Uploaded Python 3

File details

Details for the file tfkbnufft-0.1.0.tar.gz.

File metadata

  • Download URL: tfkbnufft-0.1.0.tar.gz
  • Upload date:
  • Size: 14.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for tfkbnufft-0.1.0.tar.gz
Algorithm Hash digest
SHA256 67d6878445716e68660ff841397c833ac89829398e7f0d8ccfed0ab907e843a4
MD5 7bb3a6078266edc5004025e6b9b30a6d
BLAKE2b-256 cc4d44e8fe9df92e17ddd97a9fd43506c1598d50721059eb9b0578d3b52e5f2b

See more details on using hashes here.

File details

Details for the file tfkbnufft-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: tfkbnufft-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 19.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for tfkbnufft-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7ee13ccd4198d97916fdd80d95628319968fba5f355f5b06bb756b1b3c10c132
MD5 b9db3d08fce79e0d2ed161ee4a630255
BLAKE2b-256 16ce4532d0a9d4a2e6d8dc2ebd4f3ce2fdf6d1d4eb8508015cc1f569da372bc3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page