Skip to main content

A robust, easy-to-deploy non-uniform Fast Fourier Transform in TensorFlow.

Project description

TF KB-NUFFT

GitHub | Build Status

Simple installation from pypi:

pip install tfkbnufft

About

This package is a verly early-stage and modest adaptation to TensorFlow of the torchkbnufft package written by Matthew Muckley for PyTorch. Please cite his work appropriately if you use this package.

Computation speed

The computation speeds are given in seconds, for a 256x256 image with a spokelength of 512 and 405 spokes. These numbers are not to be directly compared to those of torchkbnufft, since the computation is not the same. They are just to give a sense of the time required for computation.

Operation CPU GPU
Forward NUFFT 0.1676 0.0626
Adjoint NUFFT 0.7005 0.0635

To obtain these numbers for your machine, run the following commands, after installing this package:

pip install scikit-image Pillow
python profile_tfkbnufft.py

These numbers were obtained with a Quadro P5000.

References

  1. Fessler, J. A., & Sutton, B. P. (2003). Nonuniform fast Fourier transforms using min-max interpolation. IEEE transactions on signal processing, 51(2), 560-574.

  2. Beatty, P. J., Nishimura, D. G., & Pauly, J. M. (2005). Rapid gridding reconstruction with a minimal oversampling ratio. IEEE transactions on medical imaging, 24(6), 799-808.

  3. Feichtinger, H. G., Gr, K., & Strohmer, T. (1995). Efficient numerical methods in non-uniform sampling theory. Numerische Mathematik, 69(4), 423-440.

Citation

If you want to cite the package, you can use any of the following:

@conference{muckley:20:tah,
  author = {M. J. Muckley and R. Stern and T. Murrell and F. Knoll},
  title = {{TorchKbNufft}: A High-Level, Hardware-Agnostic Non-Uniform Fast Fourier Transform},
  booktitle = {ISMRM Workshop on Data Sampling \& Image Reconstruction},
  year = 2020
}

@misc{Muckley2019,
  author = {Muckley, M.J. et al.},
  title = {Torch KB-NUFFT},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/mmuckley/torchkbnufft}}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkbnufft-0.2.0.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

tfkbnufft-0.2.0-py3-none-any.whl (23.6 kB view details)

Uploaded Python 3

File details

Details for the file tfkbnufft-0.2.0.tar.gz.

File metadata

  • Download URL: tfkbnufft-0.2.0.tar.gz
  • Upload date:
  • Size: 18.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.5.0.1 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for tfkbnufft-0.2.0.tar.gz
Algorithm Hash digest
SHA256 aadcefb4687fd3d438ed32c072e89abf9432ba72ed463137fee3be13fc9ca410
MD5 2b585ecd10383fe50dcf58fe0099c24e
BLAKE2b-256 54fe0f1ba26f7eb333e42e4ade2ac57d0c57afd51f3f5fe7fe5357515bc7951d

See more details on using hashes here.

File details

Details for the file tfkbnufft-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: tfkbnufft-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 23.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.5.0.1 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8

File hashes

Hashes for tfkbnufft-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5f88facc18ec7d6a3f2a18887523e2875c3797faa42a7cdf76af86be7bb4949a
MD5 efc00d206ba18601e8dce57abfd90cf7
BLAKE2b-256 f9a67758a96427de183b927a1de82ca89562fbd077459d5bd6a849a2848955e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page