Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.22.tar.gz (216.0 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.22-py3.7.egg (177.5 kB view details)

Uploaded Source

tfkit-0.7.22-py3-none-any.whl (79.1 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.22.tar.gz.

File metadata

  • Download URL: tfkit-0.7.22.tar.gz
  • Upload date:
  • Size: 216.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.22.tar.gz
Algorithm Hash digest
SHA256 8acbefa4115b4c73d56026d2661fc6780dc0a87922e7769f9538b920630c7a31
MD5 49700dabd1a806b81322cf696fb9a610
BLAKE2b-256 ec118732cdf400ed9529204e90218ce4b0eebd9f5323e2d5a1b97ccaa0dab123

See more details on using hashes here.

File details

Details for the file tfkit-0.7.22-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.22-py3.7.egg
  • Upload date:
  • Size: 177.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.22-py3.7.egg
Algorithm Hash digest
SHA256 a5db0858965f9bdfd18aad89514e2d4dc86aa1e8dd7a2bac91591a7479778da1
MD5 8ee34da9cf5027a30bface7f0ac38115
BLAKE2b-256 d5e4daf1a45555dfb42d006f5ad7554a33a59bc1637d295953f7c45cbe506c56

See more details on using hashes here.

File details

Details for the file tfkit-0.7.22-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.22-py3-none-any.whl
  • Upload date:
  • Size: 79.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.22-py3-none-any.whl
Algorithm Hash digest
SHA256 b37f538a09e91ff589b7a4f132311cd2fa3861ca49cbc0fa0f736996d296bc66
MD5 9623c345c8e671c97d5aeae640a80317
BLAKE2b-256 44cd08f59465069c87eabde01b6cdacb216611bb7014d740606a66fe5e7edae0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page