Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.27.tar.gz (217.1 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.27-py3.7.egg (179.9 kB view details)

Uploaded Source

tfkit-0.7.27-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.27.tar.gz.

File metadata

  • Download URL: tfkit-0.7.27.tar.gz
  • Upload date:
  • Size: 217.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.27.tar.gz
Algorithm Hash digest
SHA256 f6182ced0b253d7f1d5557f6a3a7238a029aa21d1c87c5aa2678cc98ee67e78d
MD5 90d13dccbca203791b25d16eb71aef17
BLAKE2b-256 5c1bbc8e4f4a5a4829dcf0c72aef4da124c21ea9876d908a2b85240188459372

See more details on using hashes here.

File details

Details for the file tfkit-0.7.27-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.27-py3.7.egg
  • Upload date:
  • Size: 179.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.27-py3.7.egg
Algorithm Hash digest
SHA256 f9ec900909f06767dc0dbc1031e54a3cfafccb07cb1638d889e08a66a231a5d7
MD5 b21ddeb236b884381d6887f740b25c5c
BLAKE2b-256 6ee5ffacc293d3aea75c745cc0440e88394f9b85a4002344e028b106282aebdd

See more details on using hashes here.

File details

Details for the file tfkit-0.7.27-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.27-py3-none-any.whl
  • Upload date:
  • Size: 80.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.27-py3-none-any.whl
Algorithm Hash digest
SHA256 69201f1e0c307ee4626277029f72423cd800c9d47949b6b4883454c870055ee8
MD5 e0bdc1b552ab34b88eb3dc72905bbbc1
BLAKE2b-256 b3fd91113f360ce894a3eca290d6404008c42e173de701ec0c2115682a9da97e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page