Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.36.tar.gz (217.3 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.36-py3.7.egg (185.1 kB view details)

Uploaded Source

tfkit-0.7.36-py3-none-any.whl (80.4 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.36.tar.gz.

File metadata

  • Download URL: tfkit-0.7.36.tar.gz
  • Upload date:
  • Size: 217.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.36.tar.gz
Algorithm Hash digest
SHA256 896069431ce2e860e4dcbe4bf9fa8b2210cca14be65cc7e106bd7a44f4b59e7e
MD5 a43b2a5f3a8a869c8601ea926d9400be
BLAKE2b-256 bbbf4fd2c5a2d62880127eab06c0a25bbfdfb92a87c87c3b74ff3136efc2e593

See more details on using hashes here.

File details

Details for the file tfkit-0.7.36-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.36-py3.7.egg
  • Upload date:
  • Size: 185.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.36-py3.7.egg
Algorithm Hash digest
SHA256 7f9913d53af4babb724a3b6bef50ebfeb47972f545440e68532ca255514ceefd
MD5 21839289d081ec46c2e4cfed21c8e939
BLAKE2b-256 41e8b9ddc8ea94192ccc5f77d9db882b9568e70a6559aaf1064d0b6cee3d7101

See more details on using hashes here.

File details

Details for the file tfkit-0.7.36-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.36-py3-none-any.whl
  • Upload date:
  • Size: 80.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.36-py3-none-any.whl
Algorithm Hash digest
SHA256 528711d609c5c21e6b47146799380c29c98afdfb7f47b748a3fb91bdd8b6866c
MD5 a2486da1af7890e68f80952c90c9df9d
BLAKE2b-256 896bdc1dc86c237ab0e6fac5fb8356ed99e1d043d77fed79ad84137d14530c39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page