Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.52.tar.gz (220.4 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.52-py3.7.egg (198.4 kB view details)

Uploaded Source

tfkit-0.7.52-py3-none-any.whl (86.2 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.52.tar.gz.

File metadata

  • Download URL: tfkit-0.7.52.tar.gz
  • Upload date:
  • Size: 220.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.52.tar.gz
Algorithm Hash digest
SHA256 2bfbc0a00653fa3d5023119f649cbf65bb8d4e30c002721b690f5464c455e3a0
MD5 5fa20cc2eb3230fe42ca1d39de6e056c
BLAKE2b-256 499b782d3b302b857fa3861e3fa73aecdcb50236b6221eb1ca51aa4ad42d20b0

See more details on using hashes here.

File details

Details for the file tfkit-0.7.52-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.52-py3.7.egg
  • Upload date:
  • Size: 198.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.52-py3.7.egg
Algorithm Hash digest
SHA256 331936fdf10b48a8eb9ef032d5ee29b064bf64dc1662f0a29589c09f7f51cd67
MD5 dc1d0f688487d55f46908cbe0befafe7
BLAKE2b-256 1bb0eed5a353ef1e2286045bbfa6fa774aceb6ba5b2c10cba9257b17c2b1b5a0

See more details on using hashes here.

File details

Details for the file tfkit-0.7.52-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.52-py3-none-any.whl
  • Upload date:
  • Size: 86.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.52-py3-none-any.whl
Algorithm Hash digest
SHA256 46b7e9b509bea3fff30d9d57646911421febee4ff49ade1d7f975b6efc609285
MD5 909637c20615f40420c7cc87174cd450
BLAKE2b-256 9d5491aa5dfbaa1945e203bcbaeb889d6c368d9fb97a226661ae84a8870a094d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page