Skip to main content

Learn sparse linear models

Project description

https://travis-ci.org/spacy-io/thinc.svg?branch=master

thinc: Learn super-sparse multi-class models

thinc is a Cython library for learning models with millions of parameters and dozens of classes. It drives https://spacy.io , a pipeline of very efficient NLP components. I’ve only used thinc from Cython; no real Python API is currently available.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-5.0.7.tar.gz (690.2 kB view details)

Uploaded Source

Built Distributions

thinc-5.0.7-cp35-none-win_amd64.whl (387.3 kB view details)

Uploaded CPython 3.5 Windows x86-64

thinc-5.0.7-cp35-cp35m-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m

thinc-5.0.7-cp35-cp35m-macosx_10_6_intel.whl (399.4 kB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

thinc-5.0.7-cp34-none-win_amd64.whl (356.8 kB view details)

Uploaded CPython 3.4 Windows x86-64

thinc-5.0.7-cp34-cp34m-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.4m

thinc-5.0.7-cp34-cp34m-macosx_10_6_intel.whl (401.2 kB view details)

Uploaded CPython 3.4m macOS 10.6+ intel

thinc-5.0.7-cp27-none-win_amd64.whl (361.5 kB view details)

Uploaded CPython 2.7 Windows x86-64

thinc-5.0.7-cp27-cp27mu-manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu

thinc-5.0.7-cp27-cp27m-manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m

thinc-5.0.7-cp27-cp27m-macosx_10_6_intel.whl (398.7 kB view details)

Uploaded CPython 2.7m macOS 10.6+ intel

File details

Details for the file thinc-5.0.7.tar.gz.

File metadata

  • Download URL: thinc-5.0.7.tar.gz
  • Upload date:
  • Size: 690.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for thinc-5.0.7.tar.gz
Algorithm Hash digest
SHA256 11143b9ece5d3f71341c543e671355fe9673532ab698f9dbed6ad44ea7b0cde8
MD5 0f5c121641832394c6f54a625f0527b8
BLAKE2b-256 882c708fe277c2dadc1e0f06dc7a489c200844d55e5e857df865fa983c0fec6a

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 b0c82f3b94d47a936efec09b04cebc99fc76d2e3dbedb82e2b4282c2a5396697
MD5 6b59a464a5775a6e43b17f3075780867
BLAKE2b-256 854d0e29f931f207b03cd1eda37a8119386883ecb9e39026bfc03ee061deca75

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5286613b2fa94c0a7bad4175d349e8a6fe44cfd614a18094866089875958317a
MD5 627783962d5f0bee83065eea0fe35f8e
BLAKE2b-256 19cf2afc7b2be707af8147f2d80662642a2243bf70dad3e4f1afa5ea16ffedd3

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 f9e57d8cb2226e18b1d7a9c3ffed7a07c25a560f427fd924e5a0d09aac51244d
MD5 889f67e1be334ef20cc876d1cae4f2d0
BLAKE2b-256 a46b8cf0187fc7108f87fb2d2eb1264028b709889d622c7a29b00bc565e3631b

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 9094ead48f821c5c62fd2dccf439c3c3e9959f2c7b7ef9f1f05b347a2ff4e697
MD5 13cd282818475f1faef245c6bd8f77b0
BLAKE2b-256 4c425ee3ea715e4b1fa84067d63c8359e3ae5f6b3b7f5e050d52cd287936102b

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d06655ee2c0ea7ff0949997eb2cd92deefa71b564fb63985e76f2768e6aa79aa
MD5 7d191d8c776a3bcbe3626a048b061939
BLAKE2b-256 bec140ae054d986f6d7ceb32178c9b80cd3e61dbbbb14b9b5a5892e4c0e53421

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 4d3638e732a52d297bafb9ac6db4a881ad80ac660c58c8296a68c3ae9c7c76f9
MD5 7497aad96de125f90530b121500afd47
BLAKE2b-256 9e02034efd6500ae4d8f6c2acf4817350ef4103bc988bb13265217d1c40082df

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 b550d709d622a3c9f5b69d8159bb39df38de1ea529bb0170c11ccfae2e19f5a1
MD5 6b86037cdaee8714748690e890815850
BLAKE2b-256 fd63263ab5a9fc1eac83897fde83d0f8e03f08548c61eb13960ec62c650ee5af

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0586d021bbfd85db715231bb4e5f841ed036fa35b3dbf7139ac99b629d1616ba
MD5 43a48da7668b4b40de294c8004ef286d
BLAKE2b-256 c7cd417dfc03c723a4b85bb6a07377a4255ae4debbd9bc6a5a8c496da4cab276

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 01bdd9763aaff0ffcc9ea2f5be1caec316aabb7d5a439f02a87cc748aa80693f
MD5 963e0819530d54c0d02eafdf56a07571
BLAKE2b-256 4293d1d1782dca249d8a85532e3a773baf0e6d61266151cd44ef12ba7d7f43f9

See more details on using hashes here.

File details

Details for the file thinc-5.0.7-cp27-cp27m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for thinc-5.0.7-cp27-cp27m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 7fb1dacd9305d5b91f900f1651574f5afe5ab861cf8d90184da781e53e6a5095
MD5 e172299900df33295554c99aff08381b
BLAKE2b-256 340555cb7e887016d4d5e73db6d93ee4d1010ac00e6c78e37fef954b8d3b7871

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page