Skip to main content

Learn sparse linear models

Project description

https://travis-ci.org/spacy-io/thinc.svg?branch=master

thinc: Learn super-sparse multi-class models

thinc is a Cython library for learning models with millions of parameters and dozens of classes. It drives https://spacy.io , a pipeline of very efficient NLP components. I’ve only used thinc from Cython; no real Python API is currently available.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-5.0.8.tar.gz (690.8 kB view details)

Uploaded Source

Built Distributions

thinc-5.0.8-cp35-none-win_amd64.whl (387.1 kB view details)

Uploaded CPython 3.5 Windows x86-64

thinc-5.0.8-cp35-cp35m-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m

thinc-5.0.8-cp35-cp35m-macosx_10_6_intel.whl (399.2 kB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

thinc-5.0.8-cp34-none-win_amd64.whl (356.5 kB view details)

Uploaded CPython 3.4 Windows x86-64

thinc-5.0.8-cp34-cp34m-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.4m

thinc-5.0.8-cp34-cp34m-macosx_10_6_intel.whl (400.9 kB view details)

Uploaded CPython 3.4m macOS 10.6+ intel

thinc-5.0.8-cp27-none-win_amd64.whl (361.4 kB view details)

Uploaded CPython 2.7 Windows x86-64

thinc-5.0.8-cp27-cp27mu-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 2.7mu

thinc-5.0.8-cp27-cp27m-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 2.7m

thinc-5.0.8-cp27-cp27m-macosx_10_6_intel.whl (398.4 kB view details)

Uploaded CPython 2.7m macOS 10.6+ intel

File details

Details for the file thinc-5.0.8.tar.gz.

File metadata

  • Download URL: thinc-5.0.8.tar.gz
  • Upload date:
  • Size: 690.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for thinc-5.0.8.tar.gz
Algorithm Hash digest
SHA256 993a12ab10c0af52c1db814fdabeecc591163e76c1fff50857ca9785c7a1841c
MD5 df1a9231b7849336496a91afb56aff26
BLAKE2b-256 d31e15cdaf6b7e93f1b6d1b008960520ede5efe31f843c45feff31700c625c8f

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 e95930a87061f2083998d45abf1e3c9b677da2423e04c0b031881c921d883909
MD5 cd5d686a70a2ab57bd9c4dd2b1423611
BLAKE2b-256 441d0c6c9fba996dd604fe6058659d0b4c12b91df1486b23d3a986b5b0047049

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 503b550f48e908cff418e5967e3e005a9a6b247d75dcb7694d7b12ead3911be3
MD5 49fdf061b6d22a0cc0e35b7ae6af6a33
BLAKE2b-256 4bdc6b8c6fb1122d17c7ccd1dbdf5a0561503231a27044707d142c52faf7732c

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 883d98ba21d969bc1ca4ce0ba09cd2b0070f65616ad812b5b2be8c4d13d066dc
MD5 1ff212802060be9bd62780040371a456
BLAKE2b-256 79c20be717e3290d2df769189f09bebed03b201524ecc2e4167bda37611789de

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 254774b165ff817b02a5a3eafde7774d7d94d88265433d169e022af47c7bc74c
MD5 e9ed48c14ae66d26efb146903a0febe8
BLAKE2b-256 6a73ee43355fa212f22e280523140179737a88d02901a217ff6c199607925d41

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bd0993ba2f01ed023bc86e7ea3a860cd11872f1f5dca29bbf738518c333c38d3
MD5 3d9a83580cd66a6dafa83cb491a6787c
BLAKE2b-256 f8892db15dfb9213031de5e356cf32b225db122148596710c197e26eef515873

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 767aee351341b9166a32b869be4150ed4d2ab6d31390b47e3a1bfbe8a575892d
MD5 629814e4a703541b4209a5930b305a16
BLAKE2b-256 7f3df68c416c3336973ada131aa8b6fb27793539c877bb3bfc797144d3274ee8

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 3bd4bff40d8c7bc021c517c463b94568f54874b8e265b72a9ac5c47d285b5962
MD5 71ad203ff8e24afb361b87b3b77b333c
BLAKE2b-256 909afd2f442b045700d890e30fff43b346c25409878de6fd8d42a8c84008fd90

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fd0397b231102362c85cc40765be6a76a6c25b2faa8aabdb3ba43a9b29d5945d
MD5 fa3fc65ddd3f79f9a8d907463fe7e5ad
BLAKE2b-256 cfa752021ce2ece2c4101719d171134f707412982f79bffbf4df6d29d12a5069

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 af1ad7f841022fd9a0e3d84e9fe1a780276a99f9b71e0501dcb8a2093816ea9d
MD5 217d545fc14f3dfeda5b2b42a58c289b
BLAKE2b-256 692a015ae530c17d20b4c71334a0ca045f92a07670110796df6ea95c84ae2d36

See more details on using hashes here.

File details

Details for the file thinc-5.0.8-cp27-cp27m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for thinc-5.0.8-cp27-cp27m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 43db9dccd6d456db8e453a22363e54352bab8bd6d3c3a479f0df43586d8bff74
MD5 83d21cb2e5c91c006e611eb4e4d74911
BLAKE2b-256 83f782db19ae13372d0f18b09bdcfce69db8ea4111f99ac24719a9764a2e3222

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page