A Python library for unevenly-spaced time series analysis
Project description
A Python library for unevenly-spaced time series analysis. Greatly inspired by traces.
Get Started Notebook.
Usage
from ticts import TimeSeries
ts = TimeSeries({
'2019-01-01': 1,
'2019-01-01 00:10:00': 2,
'2019-01-01 00:11:00': 3,
})
assert ts['2019-01-01 00:05:00'] == 1
ts['2019-01-01 00:04:00'] = 10
assert ts['2019-01-01 00:05:00'] == 10
assert ts + ts == 2 * ts
from datetime import timedelta
onemin = timedelta(minutes=1)
ts_evenly_spaced = ts.sample(freq=onemin)
# if pandas installed:
df = ts.to_dataframe()
Installation
pip install ticts
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ticts-0.2.3.tar.gz
(131.4 kB
view hashes)
Built Distribution
ticts-0.2.3-py2.py3-none-any.whl
(10.4 kB
view hashes)
Close
Hashes for ticts-0.2.3-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 600b4ee5363fa00a2a7ebdf036a062c6170239a163f8d79521939299a87227ac |
|
MD5 | d35e755049ecceb2947a908114e80d5e |
|
BLAKE2b-256 | 6962b22848003c70edc074c99a54a53f52cf23f10093163ceabbcf290f6514c5 |