Skip to main content

Python client for Together's Cloud Platform!

Project description

Together Python API library

PyPI version Discord Twitter

The Together Python API Library is the official Python client for Together's API platform, providing a convenient way for interacting with the REST APIs and enables easy integrations with Python 3.8+ applications with easy to use synchronous and asynchronous clients.

Installation

🚧 The Library was rewritten in v1.0.0 released in April of 2024. There were significant changes made.

To install Together Python Library from PyPI, simply run:

pip install --upgrade together

Setting up API Key

🚧 You will need to create an account with Together.ai to obtain a Together API Key.

Once logged in to the Together Playground, you can find available API keys in this settings page.

Setting environment variable

export TOGETHER_API_KEY=xxxxx

Using the client

from together import Together

client = Together(api_key="xxxxx")

This repo contains both a Python Library and a CLI. We'll demonstrate how to use both below.

Usage – Python Client

Chat Completions

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

response = client.chat.completions.create(
    model="mistralai/Mixtral-8x7B-Instruct-v0.1",
    messages=[{"role": "user", "content": "tell me about new york"}],
)
print(response.choices[0].message.content)

Streaming

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
stream = client.chat.completions.create(
    model="mistralai/Mixtral-8x7B-Instruct-v0.1",
    messages=[{"role": "user", "content": "tell me about new york"}],
    stream=True,
)

for chunk in stream:
    print(chunk.choices[0].delta.content or "", end="", flush=True)

Async usage

import os, asyncio
from together import AsyncTogether

async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
messages = [
    "What are the top things to do in San Francisco?",
    "What country is Paris in?",
]

async def async_chat_completion(messages):
    async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
    tasks = [
        async_client.chat.completions.create(
            model="mistralai/Mixtral-8x7B-Instruct-v0.1",
            messages=[{"role": "user", "content": message}],
        )
        for message in messages
    ]
    responses = await asyncio.gather(*tasks)

    for response in responses:
        print(response.choices[0].message.content)

asyncio.run(async_chat_completion(messages))

Completions

Completions are for code and language models shown here. Below, a code model example is shown.

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

response = client.completions.create(
    model="codellama/CodeLlama-34b-Python-hf",
    prompt="Write a Next.js component with TailwindCSS for a header component.",
    max_tokens=200,
)
print(response.choices[0].text)

Streaming

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
stream = client.completions.create(
    model="codellama/CodeLlama-34b-Python-hf",
    prompt="Write a Next.js component with TailwindCSS for a header component.",
    stream=True,
)

for chunk in stream:
    print(chunk.choices[0].delta.content or "", end="", flush=True)

Async usage

import os, asyncio
from together import AsyncTogether

async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
prompts = [
    "Write a Next.js component with TailwindCSS for a header component.",
    "Write a python function for the fibonacci sequence",
]

async def async_chat_completion(prompts):
    async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
    tasks = [
        async_client.completions.create(
            model="codellama/CodeLlama-34b-Python-hf",
            prompt=prompt,
        )
        for prompt in prompts
    ]
    responses = await asyncio.gather(*tasks)

    for response in responses:
        print(response.choices[0].text)

asyncio.run(async_chat_completion(prompts))

Image generation

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

response = client.images.generate(
    prompt="space robots",
    model="stabilityai/stable-diffusion-xl-base-1.0",
    steps=10,
    n=4,
)
print(response.data[0].b64_json)

Embeddings

from typing import List
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

def get_embeddings(texts: List[str], model: str) -> List[List[float]]:
    texts = [text.replace("\n", " ") for text in texts]
    outputs = client.embeddings.create(model=model, input = texts)
    return [outputs.data[i].embedding for i in range(len(texts))]

input_texts = ['Our solar system orbits the Milky Way galaxy at about 515,000 mph']
embeddings = get_embeddings(input_texts, model='togethercomputer/m2-bert-80M-8k-retrieval')

print(embeddings)

Files

The files API is used for fine-tuning and allows developers to upload data to fine-tune on. It also has several methods to list all files, retrive files, and delete files. Please refer to our fine-tuning docs here.

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

client.files.upload(file="somedata.jsonl") # uploads a file
client.files.list() # lists all uploaded files
client.files.retrieve(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # retrieves a specific file
client.files.retrieve_content(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # retrieves content of a specific file
client.files.delete(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # deletes a file

Fine-tunes

The finetune API is used for fine-tuning and allows developers to create finetuning jobs. It also has several methods to list all jobs, retrive statuses and get checkpoints. Please refer to our fine-tuning docs here.

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

client.fine_tuning.create(
  training_file = 'file-d0d318cb-b7d9-493a-bd70-1cfe089d3815',
  model = 'mistralai/Mixtral-8x7B-Instruct-v0.1',
  n_epochs = 3,
  n_checkpoints = 1,
  batch_size = 4,
  learning_rate = 1e-5,
  suffix = 'my-demo-finetune',
  wandb_api_key = '1a2b3c4d5e.......',
)
client.fine_tuning.list() # lists all fine-tuned jobs
client.fine_tuning.retrieve(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # retrieves information on finetune event
client.fine_tuning.cancel(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # Cancels a fine-tuning job
client.fine_tuning.list_events(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") #  Lists events of a fine-tune job
client.fine_tuning.download(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # downloads compressed fine-tuned model or checkpoint to local disk

Models

This lists all the models that Together supports.

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

models = client.models.list()

for model in models:
    print(model)

Usage – CLI

Chat Completions

together chat.completions \
  --message "system" "You are a helpful assistant named Together" \
  --message "user" "What is your name?" \
  --model mistralai/Mixtral-8x7B-Instruct-v0.1

The Chat Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream.

Completions

together completions \
  "Large language models are " \
  --model mistralai/Mixtral-8x7B-v0.1 \
  --max-tokens 512 \
  --stop "."

The Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream.

Image Generations

together images generate \
  "space robots" \
  --model stabilityai/stable-diffusion-xl-base-1.0 \
  --n 4

The image is opened in the default image viewer by default. To disable this, use --no-show.

Files

# Help
together files --help

# Check file
together files check example.jsonl

# Upload file
together files upload example.jsonl

# List files
together files list

# Retrieve file metadata
together files retrieve file-6f50f9d1-5b95-416c-9040-0799b2b4b894

# Retrieve file content
together files retrieve-content file-6f50f9d1-5b95-416c-9040-0799b2b4b894

# Delete remote file
together files delete file-6f50f9d1-5b95-416c-9040-0799b2b4b894

Fine-tuning

# Help
together fine-tuning --help

# Create fine-tune job
together fine-tuning create \
  --model togethercomputer/llama-2-7b-chat \
  --training-file file-711d8724-b3e3-4ae2-b516-94841958117d

# List fine-tune jobs
together fine-tuning list

# Retrieve fine-tune job details
together fine-tuning retrieve ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b

# List fine-tune job events
together fine-tuning list-events ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b

# Cancel running job
together fine-tuning cancel ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b

# Download fine-tuned model weights
together fine-tuning download ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b

Models

# Help
together models --help

# List models
together models list

Contributing

Refer to the Contributing Guide

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

together-1.2.7.tar.gz (45.5 kB view details)

Uploaded Source

Built Distribution

together-1.2.7-py3-none-any.whl (62.9 kB view details)

Uploaded Python 3

File details

Details for the file together-1.2.7.tar.gz.

File metadata

  • Download URL: together-1.2.7.tar.gz
  • Upload date:
  • Size: 45.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for together-1.2.7.tar.gz
Algorithm Hash digest
SHA256 fae73acc903f2f364d57d3ca33d72de51f44442b4a06c69f32ad6d058457c6ee
MD5 8158eece634714eaf8656e650ca5f578
BLAKE2b-256 d8d285a1518f702c47003998dfb075d4845fd23ccfee54a5a4337c43a8efcc34

See more details on using hashes here.

File details

Details for the file together-1.2.7-py3-none-any.whl.

File metadata

  • Download URL: together-1.2.7-py3-none-any.whl
  • Upload date:
  • Size: 62.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for together-1.2.7-py3-none-any.whl
Algorithm Hash digest
SHA256 1350e3c85a0108f268177d14dd5807af2a71d01c446d1c27a907795de376a81d
MD5 011e557bf8ae7c8b2d9f296d931ece82
BLAKE2b-256 7b7858a0257009655baeffc00c225aad9699265680a7b120252798560bde3da5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page