Topsis package for MCDM problems
Project description
Topsis-Amit-102003053
For : Assignment(UCS654)
Submitted by: Amit Kumar
Roll no:102003053
Group:3COE3
Description
This is a python package used to implement TOPSIS(Technique of Order Preference Similarity to the Ideal Solution) for MCDA(Multiple criteria decision analysis)
How to use this package:
Installation
pip install Topsis-Amit-102003053
Example:
Sample dataset
Fund Name | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|
M1 | 0.78 | 0.61 | 5.5 | 34.7 | 10.4 |
M2 | 0.88 | 0.77 | 5 | 58.4 | 16.26 |
M3 | 0.61 | 0.37 | 5.9 | 39.9 | 11.7 |
M4 | 0.76 | 0.58 | 4.2 | 57.7 | 15.81 |
M5 | 0.84 | 0.71 | 3.2 | 48 | 13.19 |
M6 | 0.76 | 0.58 | 4 | 68.8 | 18.54 |
M7 | 0.81 | 0.66 | 6.5 | 38.2 | 11.54 |
M8 | 0.81 | 0.66 | 3.2 | 32.8 | 9.37 |
Input
In Command Prompt
Enter filename followed by .csv extension, then enter values of weights separated by commas like "1,1,1,2,2",then enter values of impacts separated by commas like "+,+,-,-,+" without giving space in between comma value, then enter name of file where you want to save output followed by .csv extension
topsis data.csv "1,1,1,2,2" "+,+,-,-,+" out.csv
Output
This will be in our Output csv file
Fund Name | P1 | P2 | P3 | P4 | P5 | Topsis Score | Rank |
---|---|---|---|---|---|---|---|
M1 | 0.78 | 0.61 | 5.5 | 34.7 | 10.4 | 0.5303740545041122 | 4 |
M2 | 0.88 | 0.77 | 5 | 58.4 | 16.26 | 0.5372510220778413 | 3 |
M3 | 0.61 | 0.37 | 5.9 | 39.9 | 11.7 | 0.4715707210914604 | 8 |
M4 | 0.76 | 0.58 | 4.2 | 57.7 | 15.81 | 0.5099483054760279 | 6 |
M5 | 0.84 | 0.71 | 3.2 | 48 | 13.19 | 0.57723478293325 | 1 |
M6 | 0.76 | 0.58 | 4 | 68.8 | 18.54 | 0.49447887833737925 | 7 |
M7 | 0.81 | 0.66 | 6.5 | 38.2 | 11.54 | 0.5244107252631429 | 5 |
M8 | 0.81 | 0.66 | 3.2 | 32.8 | 9.37 | 0.5576533672285703 | 2 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file Topsis-Amit-102003053-1.0.0.tar.gz
.
File metadata
- Download URL: Topsis-Amit-102003053-1.0.0.tar.gz
- Upload date:
- Size: 3.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d0553bf64b5bc4abb94ba2172c3f4aa2f0c04430602fbe4881835debb2b010d3 |
|
MD5 | 69e99f6b380db980ae8e8a507169f9d0 |
|
BLAKE2b-256 | 4e4a0cee4d92e4454504dd5ce0fa7219ff784244b2f43df7cc3055dbf6fb0cdf |
File details
Details for the file Topsis_Amit_102003053-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: Topsis_Amit_102003053-1.0.0-py3-none-any.whl
- Upload date:
- Size: 4.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e70e5c319d8191e0d02d033906ef664d86c936bc974dd523a65d96f184381bab |
|
MD5 | 32e0985fbdcd459c557aabc76e73d73b |
|
BLAKE2b-256 | 63ffb321d7315a21e2505b289299069e1523823fcc151c3e60631b10045935ab |