Skip to main content

Differentiable contour to image operations with PyTorch

Project description

torch_contour

Example of torch contour on a circle when varying the number of nodes

Example of output of contour to mask and contour to distance map on a polygon in the form of a circle when varying the number of nodes

Download

$pip install torch_contour

Overview of the Toolbox

  1. Pytorch layers for differentiable contour (polygon) to image operations.
  • Contour to mask
  • Contour to distance map
  • Draw contour
  • Smooth contour
  1. Pytorch functions for contour feature extraction.
  • Area
  • Perimeter
  • Curvature
  • Hausdorff distance
  1. Function for NumPy arrays only to remove loops inside contours and interpolate along the given contours.

Pytorch Layers

This library contains 3 pytorch non trainable layers for performing the differentiable operations of :

  1. Contour to mask
  2. Contour to distance map.
  3. Draw contour.
  4. Smooth contour

It can therefore be used to transform a polygon into a binary mask/distance map/ drawn contour in a completely differentiable way.
In particular, it can be used to transform the detection task into a segmentation task or do detection with any polygon.
The layers in 1, 2, 3 use the nice property of polygons such that for any point inside the sum of oriented angle is $\pm 2\pi$ and quickly converge towards 0 outside.
The three layers have no learnable weight.
All they do is to apply a function in a differentiable way.

Input (Float) (layer 1, 2, 3, 4):

A list of polygons of shape $B \times N \times K \times 2$ with:

  • $B$ the batch size
  • $N$ the number of polygons for each image
  • $K$ the number of nodes for each polygon

Output (Float) (layer 1, 2, 3):

A mask/distance map/contour drawn of shape $B \times N \times H \times H$ with :

  • $B$ the batch size
  • $N$ the number of polygons for each image
  • $H$ the Heigh of the distance map or mask

Output (Float) (layer 4):

Contours of shape $B \times N \times K \times 2$ with :

  • $B$ the batch size
  • $N$ the number of polygons for each image
  • $K$ the number of nodes for each polygon

Important:

The polygon must have values between 0 and 1.

Example:

from torch_contour.torch_contour import Contour_to_distance_map, Contour_to_mask, Draw_contour, Smoothing
import torch
import matplotlib.pyplot as plt

polygons1 = torch.tensor([[[[0.1640, 0.5085],
         [0.1267, 0.4491],
         [0.1228, 0.3772],
         [0.1461, 0.3027],
         [0.1907, 0.2356],
         [0.2503, 0.1857],
         [0.3190, 0.1630],
         [0.3905, 0.1774],
         [0.4595, 0.2317],
         [0.5227, 0.3037],
         [0.5774, 0.3658],
         [0.6208, 0.3905],
         [0.6505, 0.3513],
         [0.6738, 0.2714],
         [0.7029, 0.2152],
         [0.7461, 0.2298],
         [0.8049, 0.2828],
         [0.8776, 0.3064],
         [0.9473, 0.2744],
         [0.9606, 0.2701],
         [0.9138, 0.3192],
         [0.8415, 0.3947],
         [0.7793, 0.4689],
         [0.7627, 0.5137],
         [0.8124, 0.5142],
         [0.8961, 0.5011],
         [0.9696, 0.5158],
         [1.0000, 0.5795],
         [0.9858, 0.6581],
         [0.9355, 0.7131],
         [0.9104, 0.7682],
         [0.9184, 0.8406],
         [0.8799, 0.8974],
         [0.8058, 0.9121],
         [0.7568, 0.8694],
         [0.7305, 0.7982],
         [0.6964, 0.7466],
         [0.6378, 0.7394],
         [0.5639, 0.7597],
         [0.4864, 0.7858],
         [0.4153, 0.7953],
         [0.3524, 0.7609],
         [0.3484, 0.7028],
         [0.3092, 0.7089],
         [0.2255, 0.7632],
         [0.1265, 0.8300],
         [0.0416, 0.8736],
         [0.0000, 0.8584],
         [0.0310, 0.7486],
         [0.1640, 0.5085]]]], dtype=torch.float32)  

width = 200

Mask = Contour_to_mask(width)
Draw = Draw_contour(width)
Dmap = Contour_to_distance_map(width)
smoother = Smoothing(sigma=1)

plt.imshow(Mask(polygons1).cpu().detach().numpy()[0,0])
plt.show()
plt.imshow(Draw(polygons1).cpu().detach().numpy()[0,0])
plt.show()
plt.imshow(Dmap(polygons1).cpu().detach().numpy()[0,0])
plt.show()

smoothed_polygons1_ = smoother(polygons1)

Pytorch functions

This library also contains batch torch operations for performing:

  1. The area of a batch of polygons
  2. The perimeter of a batch of polygons
  3. The curvature of a batch of polygons
  4. The haussdorf distance between 2 sets of polygons
from torch_contour.torch_contour import area, perimeter, hausdorff_distance, curvature
import torch


polygons2 = torch.tensor([[[[0.0460, 0.3955],
         [0.0000, 0.2690],
         [0.0179, 0.1957],
         [0.0789, 0.1496],
         [0.1622, 0.1049],
         [0.2495, 0.0566],
         [0.3287, 0.0543],
         [0.3925, 0.1280],
         [0.4451, 0.2231],
         [0.4928, 0.2692],
         [0.5436, 0.2215],
         [0.6133, 0.1419],
         [0.7077, 0.1118],
         [0.7603, 0.1569],
         [0.7405, 0.2511],
         [0.6742, 0.3440],
         [0.6042, 0.4099],
         [0.6036, 0.4780],
         [0.6693, 0.5520],
         [0.7396, 0.6100],
         [0.8190, 0.6502],
         [0.9172, 0.6815],
         [0.9818, 0.7310],
         [0.9605, 0.8186],
         [0.8830, 0.9023],
         [0.8048, 0.9205],
         [0.7506, 0.8514],
         [0.6597, 0.7975],
         [0.5866, 0.8195],
         [0.5988, 0.9145],
         [0.6419, 1.0000],
         [0.6529, 0.9978],
         [0.6253, 0.9186],
         [0.5714, 0.8027],
         [0.5035, 0.6905],
         [0.4340, 0.6223],
         [0.3713, 0.6260],
         [0.3116, 0.6854],
         [0.2478, 0.7748],
         [0.1732, 0.8687],
         [0.0892, 0.9420],
         [0.0353, 0.9737],
         [0.0452, 0.9514],
         [0.1028, 0.8855],
         [0.1831, 0.7907],
         [0.2610, 0.6817],
         [0.3113, 0.5730],
         [0.3090, 0.4793],
         [0.2289, 0.4153],
         [0.0460, 0.3955]]]], dtype = torch.float32)  


area_ = area(polygons2)
perimeter_ = perimeter(polygons2)
curvs = curvature(polygons2)
hausdorff_dists = hausdorff_distance(polygons1, polygons2)

NumPy remove loops and interpolate

cleaner = CleanContours()
cleaned_contours = cleaner.clean_contours(polygons2.cpu().detach().numpy())
cleaned_interpolated_contours = cleaner.clean_contours_and_interpolate(polygons2.cpu().detach().numpy())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_contour-1.1.8.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

torch_contour-1.1.8-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file torch_contour-1.1.8.tar.gz.

File metadata

  • Download URL: torch_contour-1.1.8.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for torch_contour-1.1.8.tar.gz
Algorithm Hash digest
SHA256 fe22d82c948e8b92ad146d4fc49fdbe1902c44244113576d9e18919b6028fc14
MD5 31a796eccf294eb787a2eedd29198830
BLAKE2b-256 0a8605699f87d2cb46606b98c0799a5179fda770b73623243d0791d52feb91ee

See more details on using hashes here.

File details

Details for the file torch_contour-1.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for torch_contour-1.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 38f5b6671dbc0566d71a2ee92e430f901a34f8750ad6b913764125d77daa21ff
MD5 c3168875cf01709a19fb39ed5d97fa4d
BLAKE2b-256 d3d9ca0a85c7154260570cbfd65dd90ad3b2dc63adcbe30c105273aea49dbf53

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page