PyTorch Encoding Package
Project description
# PyTorch-Encoding
created by [Hang Zhang](http://hangzh.com/)
## [Documentation](http://hangzh.com/PyTorch-Encoding/)
- Please visit the [**Docs**](http://hangzh.com/PyTorch-Encoding/) for detail instructions of installation and usage.
- Please visit the [link](http://hangzh.com/PyTorch-Encoding/experiments/segmentation.html) to examples of semantic segmentation.
## Citations
**Context Encoding for Semantic Segmentation** [[arXiv]](https://arxiv.org/pdf/1803.08904.pdf)
[Hang Zhang](http://hangzh.com/), [Kristin Dana](http://eceweb1.rutgers.edu/vision/dana.html), [Jianping Shi](http://shijianping.me/), [Zhongyue Zhang](http://zhongyuezhang.com/), [Xiaogang Wang](http://www.ee.cuhk.edu.hk/~xgwang/), [Ambrish Tyagi](https://scholar.google.com/citations?user=GaSWCoUAAAAJ&hl=en), [Amit Agrawal](http://www.amitkagrawal.com/)
```
@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}
```
**Deep TEN: Texture Encoding Network** [[arXiv]](https://arxiv.org/pdf/1612.02844.pdf)
[Hang Zhang](http://hangzh.com/), [Jia Xue](http://jiaxueweb.com/), [Kristin Dana](http://eceweb1.rutgers.edu/vision/dana.html)
```
@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}
```
created by [Hang Zhang](http://hangzh.com/)
## [Documentation](http://hangzh.com/PyTorch-Encoding/)
- Please visit the [**Docs**](http://hangzh.com/PyTorch-Encoding/) for detail instructions of installation and usage.
- Please visit the [link](http://hangzh.com/PyTorch-Encoding/experiments/segmentation.html) to examples of semantic segmentation.
## Citations
**Context Encoding for Semantic Segmentation** [[arXiv]](https://arxiv.org/pdf/1803.08904.pdf)
[Hang Zhang](http://hangzh.com/), [Kristin Dana](http://eceweb1.rutgers.edu/vision/dana.html), [Jianping Shi](http://shijianping.me/), [Zhongyue Zhang](http://zhongyuezhang.com/), [Xiaogang Wang](http://www.ee.cuhk.edu.hk/~xgwang/), [Ambrish Tyagi](https://scholar.google.com/citations?user=GaSWCoUAAAAJ&hl=en), [Amit Agrawal](http://www.amitkagrawal.com/)
```
@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}
```
**Deep TEN: Texture Encoding Network** [[arXiv]](https://arxiv.org/pdf/1612.02844.pdf)
[Hang Zhang](http://hangzh.com/), [Jia Xue](http://jiaxueweb.com/), [Kristin Dana](http://eceweb1.rutgers.edu/vision/dana.html)
```
@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torch-encoding-1.0.0.tar.gz
(56.7 kB
view details)
Built Distribution
File details
Details for the file torch-encoding-1.0.0.tar.gz
.
File metadata
- Download URL: torch-encoding-1.0.0.tar.gz
- Upload date:
- Size: 56.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e41b5a9cb9da72f48598c919364d300d5813ce877d15f1adfb7fbed56f0fcbe8 |
|
MD5 | 47ed539a400d51b382dd1e2ecfd2fddf |
|
BLAKE2b-256 | 9cd17a6ffd11d5b12889f30dacf64136e4dbdf6ee4e953c6a2c8f1e63bf66834 |
File details
Details for the file torch_encoding-1.0.0-py2.py3-none-any.whl
.
File metadata
- Download URL: torch_encoding-1.0.0-py2.py3-none-any.whl
- Upload date:
- Size: 84.3 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 82808d36b113b0862330266a36a3f65624fe2d8d38a0ac313a6eb8cb219e4d1e |
|
MD5 | 315eff0c9da8fb93200e57db43eb336c |
|
BLAKE2b-256 | 58802efb0db35edadfac096de58b4806d1a73bebe4ed55e831f523b15fc9bad5 |