Skip to main content

PyTorch Encoding Package

Project description

# PyTorch-Encoding

created by [Hang Zhang](http://hangzh.com/)

## [Documentation](http://hangzh.com/PyTorch-Encoding/)

- Please visit the [**Docs**](http://hangzh.com/PyTorch-Encoding/) for detail instructions of installation and usage.

- Please visit the [link](http://hangzh.com/PyTorch-Encoding/experiments/segmentation.html) to examples of semantic segmentation.

## Citations

**Context Encoding for Semantic Segmentation** [[arXiv]](https://arxiv.org/pdf/1803.08904.pdf)
[Hang Zhang](http://hangzh.com/), [Kristin Dana](http://eceweb1.rutgers.edu/vision/dana.html), [Jianping Shi](http://shijianping.me/), [Zhongyue Zhang](http://zhongyuezhang.com/), [Xiaogang Wang](http://www.ee.cuhk.edu.hk/~xgwang/), [Ambrish Tyagi](https://scholar.google.com/citations?user=GaSWCoUAAAAJ&hl=en), [Amit Agrawal](http://www.amitkagrawal.com/)
```
@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}
```

**Deep TEN: Texture Encoding Network** [[arXiv]](https://arxiv.org/pdf/1612.02844.pdf)
[Hang Zhang](http://hangzh.com/), [Jia Xue](http://jiaxueweb.com/), [Kristin Dana](http://eceweb1.rutgers.edu/vision/dana.html)
```
@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}
```


Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-encoding-1.0.0.tar.gz (56.7 kB view details)

Uploaded Source

Built Distribution

torch_encoding-1.0.0-py2.py3-none-any.whl (84.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torch-encoding-1.0.0.tar.gz.

File metadata

  • Download URL: torch-encoding-1.0.0.tar.gz
  • Upload date:
  • Size: 56.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for torch-encoding-1.0.0.tar.gz
Algorithm Hash digest
SHA256 e41b5a9cb9da72f48598c919364d300d5813ce877d15f1adfb7fbed56f0fcbe8
MD5 47ed539a400d51b382dd1e2ecfd2fddf
BLAKE2b-256 9cd17a6ffd11d5b12889f30dacf64136e4dbdf6ee4e953c6a2c8f1e63bf66834

See more details on using hashes here.

File details

Details for the file torch_encoding-1.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: torch_encoding-1.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 84.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for torch_encoding-1.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 82808d36b113b0862330266a36a3f65624fe2d8d38a0ac313a6eb8cb219e4d1e
MD5 315eff0c9da8fb93200e57db43eb336c
BLAKE2b-256 58802efb0db35edadfac096de58b4806d1a73bebe4ed55e831f523b15fc9bad5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page