Skip to main content

An Efficient Unitary Neural Network implementation for PyTorch

Project description

torch_eunn

This repository contains a simple pytorch implementation of a Tunable Efficient Unitary Neural Network (EUNN) Cell. This implementation was based on the tunable EUNN presented in this paper: https://arxiv.org/abs/1612.05231.

Installation

    pip install torch_eunn

Usage

    from torch_eunn import EUNNLayer # feed forward layer
    from torch_eunn import EUNN # Recurrent unit

Requirements

  • PyTorch >= 0.4.0: conda install pytorch -c pytorch

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_eunn-0.1.1.tar.gz (4.7 kB view details)

Uploaded Source

Built Distributions

torch_eunn-0.1.1-py3-none-any.whl (5.2 kB view details)

Uploaded Python 3

torch_eunn-0.1.1-py2-none-any.whl (5.2 kB view details)

Uploaded Python 2

File details

Details for the file torch_eunn-0.1.1.tar.gz.

File metadata

  • Download URL: torch_eunn-0.1.1.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5

File hashes

Hashes for torch_eunn-0.1.1.tar.gz
Algorithm Hash digest
SHA256 238340ae1741ba963a21cf227eea76c65b702d3f093a9d1bddec2a51833ff019
MD5 6c86b271a4a4502e54af5ed18d32a83c
BLAKE2b-256 05347c3d4e7029bfd224eec79d61114d61f05b428fe3d99ca712ec2c3d796c68

See more details on using hashes here.

File details

Details for the file torch_eunn-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: torch_eunn-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 5.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5

File hashes

Hashes for torch_eunn-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3025ddeb76781623c601dd0f1f36d3bfad703517ae1f644d35197dd833e2d8f2
MD5 b8d918f8eac692279bd2d8de3594123a
BLAKE2b-256 cabfd64b72b38858882476e86a72910ed4fee109db4544634afd5f0280b29fe6

See more details on using hashes here.

File details

Details for the file torch_eunn-0.1.1-py2-none-any.whl.

File metadata

  • Download URL: torch_eunn-0.1.1-py2-none-any.whl
  • Upload date:
  • Size: 5.2 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/2.7.15

File hashes

Hashes for torch_eunn-0.1.1-py2-none-any.whl
Algorithm Hash digest
SHA256 19f68157a5cb0410ea4331a1c23752322cb4127bf620f4aea0c8023c6e5f04fd
MD5 ea15ff67030153b337ecbc365e7b366a
BLAKE2b-256 d66f7d0969f85211f711d2beea0a99ec4784ae97be38158fc02ec6bc543fd880

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page