A library of helpers to train, evaluate and visualize deep nets with PyTorch.
Project description
Readme
A library of helpers for PyTorch.
Michaël Gharbi <mgharbi@adobe.com>
Installation
From pip: pip install torch-tools
From source: python setup.py install
Documentation
The documentation webpage can be found here https://torch-tools.readthedocs.io/en/latest/
Demo
For a simple demo, look at the MNIST example in examples/train_mnist.py:
python examples/train_mnist.py data out
Contributors
Dima Smirnov implemented the tensorboard hooks and callbacks.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torch-tools-0.0.15.tar.gz
(22.7 kB
view details)
Built Distribution
File details
Details for the file torch-tools-0.0.15.tar.gz
.
File metadata
- Download URL: torch-tools-0.0.15.tar.gz
- Upload date:
- Size: 22.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f5072fcdc4039e355b120db1cf2aa3b6fe74c2384ce24db33e834f0c57480a9 |
|
MD5 | 683b1992147074a3104a9af9858bc38e |
|
BLAKE2b-256 | 4e87249feab64cd70a84490929311b3f6808daa37b5728c7de9831d6b03bfb22 |
File details
Details for the file torch_tools-0.0.15-py3-none-any.whl
.
File metadata
- Download URL: torch_tools-0.0.15-py3-none-any.whl
- Upload date:
- Size: 28.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a618291311c61e097df795fd35e11eba9599811abd4775f7fda6124ebfef033 |
|
MD5 | 77cb1d98dba8032c76d82e9e69db13fc |
|
BLAKE2b-256 | bd6658a9f133a3a48d6509ed5029e77e99a2026539e7c782a71c2373525b6d0b |