A pluggable & extensible trainer for pytorch
Project description
Torchero - A training framework for pytorch
Torchero is a library that works on top of the PyTorch framework built to facilitate the training of Neural Networks.
Features
It provides tools and utilities to:
- Set up a training process in a few lines of code.
- Monitor the training performance by checking several prebuilt metrics on a handy progress bar.
- Integrate a TensorBoard dashboard to visualize those metrics in an online manner with a minimal setup.
- Add custom functionality via Callbacks.
- NLP & Computer Vision: Datasets for text and image classification tasks. Pretrained Embedding Vectors, Models, etc.
Installation
From PyPI
pip install torchero
From Source Code
git clone https://github.com/juancruzsosa/torchero
cd torchero
python setup.py install
Quickstart - MNIST
Loading the Data
import torch
from torch import nn
import torchero
from torchero.models.vision import ImageClassificationModel
from torchero.callbacks import ProgbarLogger, ModelCheckpoint, CSVLogger
from torchero.utils.data import train_test_split
from torchero.utils.vision import show_imagegrid_dataset, transforms, datasets, download_image
from torchero.meters import ConfusionMatrix
from matplotlib import pyplot as plt
First we load the MNIST train and test datasets and visualize it using show_imagegrid_dataset
.
The Data Augmentation for this case will be a RandomInvert to flip the grayscale levels.
train_ds = datasets.MNIST(root='/tmp/data/mnist', download=True, train=True, transform=transforms.Compose([transforms.RandomInvert(),
transforms.ToTensor()]))
test_ds = datasets.MNIST(root='/tmp/data/mnist', download=False, train=False, transform=transforms.ToTensor())
show_imagegrid_dataset(train_ds)
plt.show()
Defining the Network
Let's define a Convolutional network of two layers followed by a Linear Module as the classification layer.
network = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3),
nn.ReLU(inplace=True),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(5*5*64, 500),
nn.ReLU(inplace=True),
nn.Linear(500, 10))
Training the Model
The ImageClassificationModel is the module responsible to train the model, evaluate a metric against a dataset, and predict from and input for multi-class classification tasks.
To train the model we need to compile it first with a:
- an optimizer: 'adam'
- a loss which will be defaulted to
cross_entropy
- a list of metrics which will be defaulted to
categorical_accuracy
,balanced_accuracy
) - a list of callbacks:
- ProgbarLogger to show training progress bar
- ModelCheckpoint to make checkpoints if the model improves
- CSVLogger to dump the metrics to a csv file after each epoch
model = ImageClassificationModel(model=network,
transform=transforms.Compose([transforms.Grayscale(),
transforms.Resize((28,28)),
transforms.ToTensor()]),
classes=[str(i) for i in range(10)])
model.compile(optimizer='adam',
callbacks=[ProgbarLogger(notebook=True),
ModelCheckpoint('saved_model', mode='max', monitor='val_acc'),
CSVLogger('training_results.xml')])
if torch.cuda.is_available():
model.cuda()
history = model.fit(train_ds,
test_ds,
batch_size=1024,
epochs=5)
Displaying the training results
To visualize our loss and accuracy in each epoch we can execute:
history.plot(figsize=(20, 20), smooth=0.2)
plt.show()
The .evaluate
returns the metrics for a new dataset.
results = model.evaluate(test_ds, metrics=['categorical_accuracy', 'balanced_accuracy', ConfusionMatrix()])
for metric in ['acc', 'balanced_acc']:
print("{}: {:.3f}%".format(metric, results[metric] * 100))
fig, ax = plt.subplots(figsize=(12,12))
results['confusion_matrix'].plot(fig=fig, ax=ax, classes=model.classes)
Documentation
Additional documentation can be founded here
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file torchero-0.1.0.tar.gz
.
File metadata
- Download URL: torchero-0.1.0.tar.gz
- Upload date:
- Size: 79.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e12a492eaf241fd3e0d85968f956c3924cf5efb8bcc3fa77ccd6b6a5f331a7c9 |
|
MD5 | b6aea254c17e4036dce4c6dfc34e9e40 |
|
BLAKE2b-256 | 03c361d6073702e2f69a95dada3039f0e6df68c9546cc2ac40a77704cc57f250 |
File details
Details for the file torchero-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: torchero-0.1.0-py3-none-any.whl
- Upload date:
- Size: 103.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aab43894fdd0edb5498ab92efe2d748a92bf04d6f907955f81565efbdc58352b |
|
MD5 | 4ce429bf2e1ea1e7cde6050d57666100 |
|
BLAKE2b-256 | 149d61c2c8a2c47e53cbb38df2a3bcb9d29a20ee40f2b30bf720364e9bca0ef8 |