TorchHandle makes your PyTorch development more efficient and make you use PyTorch more comfortable
Project description
torchhandle
TorchHandle makes your PyTorch development more efficient and make you use PyTorch more comfortable
torchhandle is an auxiliary framework for PyTorch. It abstracts the cumbersome and repetitive training code of PyTorch, allowing data scientists to focus on data processing, model creation and arameter optimization instead of writing repetitive training loop codes.
Torchhandle will make your code more concise and readable, and make your development tasks more efficient.
Introduction
Torchhandle abstractly organizes and extracts the training and inference process of Pytorch, build deep learning pipeline of PyTorch only need a few lines of code.
Custom training metrics, cross validation, early stop, gradient accumulation, checkpoint recovery, full training reporting, integrated Tensorboard visualization, and more are all available with a few simple options.
Install
pip install -U torchhandle
TorchHandle requires very few dependent libraries to run. The recommended versions of the libraries are as follows
- Python 3.6 +
- PyTorch 1.5 + (1.1+ will ok, preferably 1.5 +)
- tqdm 4.33.0 +
- matplotlib
- OS (Centos7, Ubuntu),Windows 10, Colab,Kaggle tested, MacOS not tested
Quick Start
#model
model = {"fn": "model class",
"args":"Parameters that need to be passed to model"# optional
}
#loss function
criterion = {"fn": "loss function class",
"args":"Parameters that need to be passed"# optional
}
#optimizer
optimizer = {"fn": "optimizer class",
"args":"Parameters for create optimizer",# optional
"params":"different parameters of each model layers" # optional see example 01
}
# lr scheduler
scheduler = {"fn": "lr scheduler class",
"args": "scheduler arameters",
"type": "batch/epoch" # call scheduler per epoch/batch ,default epoch
}
#dataloader
loaders = {"train": "train dataloader",
"valid": "valid dataloader" # optional
}
Workflow object definition
Context: The Context of the training environment, containing the model to be trained, optimizer, loss function, scheduler, and other parameter that not change in train loop
Session: Session object is created according to the context. Each Session holds a separate model object, optimizer, etc. and cross-validation can be achieved by creating different sessions in one Context
Metric: Custom metrics
Examples
01 ML - MLP with different learning rate for specific layer
from collections import OrderedDict
import torch
from torchhandle.workflow import BaseContext
class Net(torch.nn.Module):
def __init__(self, ):
super().__init__()
self.layer = torch.nn.Sequential(OrderedDict([
('l1', torch.nn.Linear(10, 20)),
('a1', torch.nn.ReLU()),
('l2', torch.nn.Linear(20, 10)),
('a2', torch.nn.ReLU()),
('l3', torch.nn.Linear(10, 1))
]))
def forward(self, x):
x = self.layer(x)
return x
num_samples, num_features = int(1e4), int(1e1)
X, Y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = torch.utils.data.TensorDataset(X, Y)
trn_loader = torch.utils.data.DataLoader(dataset, batch_size=64, num_workers=0, shuffle=True)
loaders = {"train": trn_loader, "valid": trn_loader}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = {"fn": Net}
criterion = {"fn": torch.nn.MSELoss}
optimizer = {"fn": torch.optim.Adam,
"args": {"lr": 0.1},
"params": {"layer.l1.weight": {"lr": 0.01},
"layer.l1.bias": {"lr": 0.02}}
}
scheduler = {"fn": torch.optim.lr_scheduler.StepLR,
"args": {"step_size": 2, "gamma": 0.9}
}
c = BaseContext(model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
context_tag="ex01")
train = c.make_train_session(device, dataloader=loaders)
train.train(epochs=10)
02 ML - linear regression with early stopping by custom metrics and save all metrics to tensorboard
import torch
from torchhandle.workflow import BaseContext,Metric
import math
class C1(BaseContext):
def init_state_fn(self):
state=super().init_state_fn()
state.es_current_step=0
state.es_metric=1000
return state
def early_stopping_fn(self,session):
"""
return true to stop
"""
es_steps = 5
valid_loss = session.epoch_metric["valid_loss"]
session.state.es_current_step=session.state.es_current_step+1
if valid_loss < session.state.es_metric:
session.state.es_metric=valid_loss
session.state.es_current_step=0
elif session.state.es_current_step >= es_steps:
return True
return False
class RMSE(Metric):
def calculate(self, session) -> list:
rmse = math.sqrt(session.state.loss)
return [rmse]
@property
def name(self) -> list:
return ["RMSE"]
@property
def best(self) -> list:
return ["min"]
num_samples, num_features = int(1e4), int(1e1)
X, Y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = torch.utils.data.TensorDataset(X, Y)
trn_loader = torch.utils.data.DataLoader(dataset, batch_size=64, num_workers=0,shuffle=True)
val_loader = torch.utils.data.DataLoader(dataset, batch_size=128, num_workers=0)
loaders = {"train": trn_loader, "valid": val_loader}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = {"fn": torch.nn.Linear,
"args": {"in_features": 10, "out_features": 1}
}
criterion = {"fn": torch.nn.MSELoss
}
optimizer = {"fn": torch.optim.Adam
}
metric_fn = [RMSE()]
c = C1(model=model,
criterion=criterion,
optimizer=optimizer,
metric_fn=metric_fn,
output_dir="./outputs",
logging_file="output.log",
context_tag="ex02")
train = c.make_train_session(device, dataloader=loaders)
train.train(epochs=100)
print("this line was not write to log file")
03 ML - Cross Validation
import torch
from torchhandle.workflow import BaseContext
num_samples, num_features = int(1e4), int(1e1)
X, Y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = torch.utils.data.TensorDataset(X, Y)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = {"fn": torch.nn.Linear,
"args": {"in_features": 10, "out_features": 1}
}
criterion = {"fn": torch.nn.MSELoss
}
optimizer = {"fn": torch.optim.Adam
}
scheduler = {"fn": torch.optim.lr_scheduler.StepLR,
"args": {"step_size": 2, "gamma": 0.9}
}
c = BaseContext(model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
output_dir="./outputs",
logging_file="log.txt",
context_tag="ex03")
for i in range(5):
# use all data just for for demo , not actual Kford
trn_loader = torch.utils.data.DataLoader(dataset, batch_size=64, num_workers=0,shuffle=True)
val_loader = torch.utils.data.DataLoader(dataset, batch_size=128, num_workers=0)
loaders = {"train": trn_loader, "valid": val_loader}
session=c.make_train_session(device,dataloader=loaders,fold_tag=i)
session.train(10)
04 CV mnist - Training built-in model and dataset using gradient accumulation
import torch
from torchvision import datasets, transforms,models
from torchhandle.workflow import BaseContext,Metric
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 3, kernel_size=1)
self.resnet18=models.resnet18(pretrained=False,num_classes=10)
def forward(self, x):
x = self.conv1(x)
x= self.resnet18(x)
return x
class ACCU(Metric):
@property
def name(self):
return ["accuracy","fake_metric"]
@property
def best(self):
return ["max","min"]
def calculate(self,session):
pred = session.state.output_batch.detach().cpu()
targets = session.state.target_batch
pred = torch.argmax(pred, 1)
correct = (pred == targets).sum().float()
total = len(targets)
return [(correct/total).item(),session.state.current_epoch]
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])])
data_train = datasets.MNIST(root="./data/",
transform=transform,
train=True,
download=True)
data_test = datasets.MNIST(root="./data/",
transform=transform,
train=False)
trn_loader = torch.utils.data.DataLoader(data_train, batch_size=256, num_workers=0,shuffle=True)
val_loader = torch.utils.data.DataLoader(data_test, batch_size=512, num_workers=0)
loaders = {"train": trn_loader, "valid": val_loader}
model = {"fn": Model
}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
criterion = {"fn": torch.nn.CrossEntropyLoss
}
optimizer = {"fn": torch.optim.Adam
}
scheduler = {"fn": torch.optim.lr_scheduler.StepLR,
"args": {"step_size": 2, "gamma": 0.9}
}
c = BaseContext(model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
metric_fn=[ACCU()],
output_dir="./outputs",
progress=20,
ga_step_size=4,
context_tag="ex04")
session=c.make_train_session(device,loaders)
session.train(10)
05 CV mnist - lr_scheduler per batch
import torch
from torchvision import datasets, transforms,models
from torchhandle.workflow import BaseContext
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 3, kernel_size=1)
self.resnet18=models.resnet18(pretrained=False,num_classes=10)
def forward(self, x):
x = self.conv1(x)
x= self.resnet18(x)
return x
class C1(BaseContext):
# custom scheduler step for pass epoch
def scheduler_step_fn(self,session):
epoch = session.state.current_epoch
session.scheduler.step(epoch)
EPOCHS=10
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])])
data_train = datasets.MNIST(root="./data/",
transform=transform,
train=True,
download=True)
trn_loader = torch.utils.data.DataLoader(data_train, batch_size=256, num_workers=0,shuffle=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = {"fn": Model
}
optimizer = {"fn": torch.optim.Adam
}
scheduler = {"fn": torch.optim.lr_scheduler.CosineAnnealingWarmRestarts,
"args": {"T_0": EPOCHS // 3, "T_mult": 1,"eta_min":0,"last_epoch":-1},
"type" : "batch"
}
criterion = {"fn": torch.nn.CrossEntropyLoss}
c = C1(model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
context_tag="ex05",
output_dir="./outputs",
ga_steps=4)
session = c.make_train_session(device, {"train": trn_loader})
session.train(EPOCHS)
TODO
inference function
Checkpoint
XLA(TPU) Support
Distributed Training
More examples
Contact us
If you don't like GitHub issues, contact us at deephub.ai[at]gmail.com.
If you planning to contribute bug fixes, please do PR.
If you planning to contribute new features , please first open an issue and discuss the feature with us.
If you would like to start a collaboration between your team and deephub, or join our team for better deep learning development, you are always welcome.
If you have any questions, please feel free to send us an email, and we welcome and appreciate any kind of contribution and feedback.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for torchhandle-0.6.2101a0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e2fb6b8dd0e7ec325af75d297a3a77b95c6e9f750259513aff94a65b41be5f1 |
|
MD5 | 759a7b9a9867c0575c11022d466f3fb0 |
|
BLAKE2b-256 | 809be0bcf12f5eabdf55c195a162127a3862743b0d94aa8df0f5b9dd73e10511 |