Skip to main content

A lightweight training tool for pytorch projects.

Project description

TorchLiter

test License: MIT PyPI version

A freely customizable and truly lightweight training tool for any pytorch projects

Install

pip install torchliter

Example Usage:

import torchliter as lux
import torch
import torch.nn as nn
import torch.nn.functional as F


cart = lux.Cart()
cart.model = nn.Linear(1, 3)
cart.train_loader = torch.utils.data.DataLoader(
    [i for i in range(100)], batch_size=5
)
cart.eval_loader = torch.utils.data.DataLoader(
    [i for i in range(100)], batch_size=5
)
cart.optimizer = torch.optim.AdamW(
    cart.model.parameters(), lr=1e-3, weight_decay=1e-5
)

def train_step(_, batch, **kwargs):
    image, target = batch
    logits = _.model(image)
    loss = F.cross_entropy(logits, target)
    _.optimizer.zero_grad()
    loss.backward()
    _.optimizer.step()

    yield "cross entropy loss", loss.item()

    acc = (logits.max(-1).indices == target).float().mean()

    yield "train acc", acc.item()

def eval_step(_, batch, **kwargs):
    image, target = batch
    with torch.no_grad():
        logits = _.model(image)
    acc = (logits.max(-1).indices == target).float().mean()
    yield "eval acc", acc.item()

def hello(_):
    print("hello")

train_buffers = lux.engine.AutoEngine.auto_buffers(
    train_step, lux.buffers.ExponentialMovingAverage
)
eval_buffers = lux.engine.AutoEngine.auto_buffers(
    eval_step, lux.buffers.ScalarSummaryStatistics
)
TestEngineClass = lux.engine.AutoEngine.build(
    "TestEngine", train_step, eval_step, print_hello=hello
)
test_engine = TestEngineClass(**{**cart.kwargs, **train_buffers, **eval_buffers})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchliter-0.3.4.tar.gz (16.1 kB view details)

Uploaded Source

Built Distribution

torchliter-0.3.4-py3-none-any.whl (19.9 kB view details)

Uploaded Python 3

File details

Details for the file torchliter-0.3.4.tar.gz.

File metadata

  • Download URL: torchliter-0.3.4.tar.gz
  • Upload date:
  • Size: 16.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for torchliter-0.3.4.tar.gz
Algorithm Hash digest
SHA256 b41546bba8038d86772111381d6b00b7bbf02cadd947a8706797a17d439fa2e9
MD5 4fb86d69ce4ad1001fad90f3d97842a1
BLAKE2b-256 91d6511209e6f97416c67a0b817a87b9212046c6982a9c2a7de25d555f454321

See more details on using hashes here.

File details

Details for the file torchliter-0.3.4-py3-none-any.whl.

File metadata

  • Download URL: torchliter-0.3.4-py3-none-any.whl
  • Upload date:
  • Size: 19.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for torchliter-0.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 3bf87c1665d05a6645b877307be9a031f89ccedf060223a24e40127f97c67d61
MD5 fab80deef95cebab0a1c381274ac0fbd
BLAKE2b-256 97b9e8b28c0e7397a0c02a08d1164b30db0d0fe56906a1f5fe6959202a855b76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page