Skip to main content

A PyTorch landmarks-only library with 100+ data augmentations, training and inference, can easily install with pip and compatible with albumentations and torchvision.

Project description

torchlm-logo

English | 中文文档

🤗 Introduction

torchlm is a PyTorch landmarks-only library with 100+ data augmentations, support training and inference. torchlm is aims at only focus on any landmark detection, such as face landmarks, hand keypoints and body keypoints, etc. It provides 30+ native data augmentations and can bind with 80+ transforms from torchvision and albumentations, no matter the input is a np.ndarray or a torch Tensor, torchlm will automatically be compatible with different data types and then wrap it back to the original type through a autodtype wrapper. Further, torchlm will add modules for training and inference in the future.


❤️ Star 🌟👆🏻 this repo to support me if it does any helps to you, thanks ~

🆕 What's New

  • [2022/02/13]: Add 30+ native data augmentations and bind 80+ transforms from torchvision and albumentations.

🛠️ Usage

Requirements

  • opencv-python-headless>=4.5.2
  • numpy>=1.14.4
  • torch>=1.6.0
  • torchvision>=0.9.0
  • albumentations>=1.1.0

Installation

you can install torchlm directly from pypi.

pip3 install torchlm
# install from specific pypi mirrors use '-i'
pip3 install torchlm -i https://pypi.org/simple/

or install from source.

# clone torchlm repository locally
git clone --depth=1 https://github.com/DefTruth/torchlm.git 
cd torchlm
# install in editable mode
pip install -e .

Data Augmentation

torchlm provides 30+ native data augmentations for landmarks and can bind with 80+ transforms from torchvision and albumentations through torchlm.bind method. Further, torchlm.bind provide a prob param at bind-level to force any transform or callable be a random-style augmentation. The data augmentations in torchlm are safe and simplest. Any transform operations at runtime cause landmarks outside will be auto dropped to keep the number of landmarks unchanged. The layout format of landmarks is xy with shape (N, 2), N denotes the number of the input landmarks. No matter the input is a np.ndarray or a torch Tensor, torchlm will automatically be compatible with different data types and then wrap it back to the original type through a autodtype wrapper.

  • use almost 30+ native transforms from torchlm directly
import torchlm
transform = torchlm.LandmarksCompose([
        # use native torchlm transforms
        torchlm.LandmarksRandomScale(prob=0.5),
        torchlm.LandmarksRandomTranslate(prob=0.5),
        torchlm.LandmarksRandomShear(prob=0.5),
        torchlm.LandmarksRandomMask(prob=0.5),
        torchlm.LandmarksRandomBlur(kernel_range=(5, 25), prob=0.5),
        torchlm.LandmarksRandomBrightness(prob=0.),
        torchlm.LandmarksRandomRotate(40, prob=0.5, bins=8),
        torchlm.LandmarksRandomCenterCrop((0.5, 1.0), (0.5, 1.0), prob=0.5),
        # ...
    ])

  • bind 80+ torchvision and albumentations's transforms through torchlm.bind
import torchvision
import albumentations
import torchlm
transform = torchlm.LandmarksCompose([
        # use native torchlm transforms
        torchlm.LandmarksRandomScale(prob=0.5),
        # bind torchvision image only transforms, bind with a given prob
        torchlm.bind(torchvision.transforms.GaussianBlur(kernel_size=(5, 25)), prob=0.5),  
        torchlm.bind(torchvision.transforms.RandomAutocontrast(p=0.5)),
        # bind albumentations image only transforms
        torchlm.bind(albumentations.ColorJitter(p=0.5)),
        torchlm.bind(albumentations.GlassBlur(p=0.5)),
        # bind albumentations dual transforms
        torchlm.bind(albumentations.RandomCrop(height=200, width=200, p=0.5)),
        torchlm.bind(albumentations.Rotate(p=0.5)),
        # ...
    ])
  • bind custom callable array or Tensor functions through torchlm.bind
# First, defined your custom functions
def callable_array_noop(img: np.ndarray, landmarks: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
    # do some transform here ...
    return img.astype(np.uint32), landmarks.astype(np.float32)

def callable_tensor_noop(img: Tensor, landmarks: Tensor) -> Tuple[Tensor, Tensor]:
    # do some transform here ...
    return img, landmarks
# Then, bind your functions and put it into the transforms pipeline.
transform = torchlm.LandmarksCompose([
        # use native torchlm transforms
        torchlm.LandmarksRandomScale(prob=0.5),
        # bind custom callable array functions
        torchlm.bind(callable_array_noop, bind_type=torchlm.BindEnum.Callable_Array),
        # bind custom callable Tensor functions with a given prob
        torchlm.bind(callable_tensor_noop, bind_type=torchlm.BindEnum.Callable_Tensor, prob=0.5),  
        # ...
    ])

  • setup logging mode as True globally might help you figure out the runtime details
import torchlm
# some global setting
torchlm.set_transforms_debug(True)
torchlm.set_transforms_logging(True)
torchlm.set_autodtype_logging(True)

some detail information will show you at each runtime, the infos might look like

LandmarksRandomScale() AutoDtype Info: AutoDtypeEnum.Array_InOut
LandmarksRandomScale() Execution Flag: False
BindTorchVisionTransform(GaussianBlur())() AutoDtype Info: AutoDtypeEnum.Tensor_InOut
BindTorchVisionTransform(GaussianBlur())() Execution Flag: True
BindAlbumentationsTransform(ColorJitter())() AutoDtype Info: AutoDtypeEnum.Array_InOut
BindAlbumentationsTransform(ColorJitter())() Execution Flag: True
BindTensorCallable(callable_tensor_noop())() AutoDtype Info: AutoDtypeEnum.Tensor_InOut
BindTensorCallable(callable_tensor_noop())() Execution Flag: False
Error at LandmarksRandomTranslate() Skip, Flag: False Error Info: LandmarksRandomTranslate() have 98 input landmarks, but got 96 output landmarks!
LandmarksRandomTranslate() Execution Flag: False
  • Execution Flag: True means current transform was executed successful, False means it was not executed because of the random probability or some Runtime Exceptions(torchlm will should the error infos if debug mode is True).

  • AutoDtype Info:

    • Array_InOut means current transform need a np.ndnarray as input and then output a np.ndarray.
    • Tensor_InOut means current transform need a torch Tensor as input and then output a torch Tensor.
    • Array_In means current transform needs a np.ndarray input and then output a torch Tensor.
    • Tensor_In means current transform needs a torch Tensor input and then output a np.ndarray.

    But, is ok if you pass a Tensor to a np.ndarray-like transform, torchlm will automatically be compatible with different data types and then wrap it back to the original type through a autodtype wrapper.

  • Supported Transforms Sets, see transforms.md. A detail example can be found at test/transforms.py.

Training(TODO)

  • YOLOX
  • YOLOv5
  • NanoDet
  • PIPNet
  • ResNet
  • MobileNet
  • ShuffleNet
  • ...

Inference

The ONNXRuntime(CPU/GPU), MNN, NCNN and TNN C++ inference of torchlm will be release at lite.ai.toolkit.

📖 Documentations

🎓 License

The code of torchlm is released under the MIT License.

❤️ Contribution

Please consider ⭐ this repo if you like it, as it is the simplest way to support me.

👋 Acknowledgement

The implementation of torchlm's transforms borrow the code from Paperspace .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlm-0.1.5.tar.gz (5.0 MB view details)

Uploaded Source

Built Distribution

torchlm-0.1.5-py3-none-any.whl (5.0 MB view details)

Uploaded Python 3

File details

Details for the file torchlm-0.1.5.tar.gz.

File metadata

  • Download URL: torchlm-0.1.5.tar.gz
  • Upload date:
  • Size: 5.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.60.0 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.2

File hashes

Hashes for torchlm-0.1.5.tar.gz
Algorithm Hash digest
SHA256 9324b085a750e5083175273f52ff4b2e08ac0cb4546bb254d18eece937c6c248
MD5 c8a071fb7ec5e89f08b41b0baee88ca1
BLAKE2b-256 db1c6e651ffb271c3a6c52de8721cd9d0579d474f9ffcb77dd587f739dcdd84c

See more details on using hashes here.

File details

Details for the file torchlm-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: torchlm-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.60.0 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.2

File hashes

Hashes for torchlm-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 d807c24c4f2a739633b66e8b69f646b0853bcf5f4c9d932e265b40d637a1fad9
MD5 cb8d4aa6c4f11c6d92f16d3733ac49cb
BLAKE2b-256 972a223bc0ac8384fbdc1cc79a745074e703b179e62fd358339b50ef982f5d59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page