Classical ML on top of PyTorch
Project description
torchml
implements the scikit-learn API on top of PyTorch.
This means we automatically get GPU support for scikit-learn and, when possible, differentiability.
Resources
- GitHub: github.com/learnables/torchml
- Documentation: learnables.net/torchml
- Tutorials: learnables.net/torchml/tutorials
- Examples: learnables.net/torchml/examples
Getting Started
pip install torchml
Minimal Linear Regression Example
import torchml as ml
(X_train, y_train), (X_test, y_test) = generate_data()
# API closely follows scikit-learn
linreg = ml.linear_model.LinearRegression()
linreg.fit(X_train, y_train)
linreg.predict(X_test)
Changelog
A human-readable changelog is available in the CHANGELOG.md file.
Citing
To cite torchml
repository in your academic publications, please use the following reference.
Sébastien M. R. Arnold, Lucy Xiaoyang Shi, Xinran Gao, Zhiheng Zhang, and Bairen Chen. 2023. "torchml: a scikit-learn implementation on top of PyTorch".
You can also use the following Bibtex entry:
@misc{torchml,
author={Arnold, S{\'e}bastien M R and Shi, Lucy Xiaoyang and Gao, Xinran and Zhang, Zhiheng and Chen, Bairen},
title={torchml: A scikit-learn implementation on top of PyTorch},
year={2023},
url={https://github.com/learnables/torchml},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchml-0.1.0.tar.gz
(170.3 kB
view details)
File details
Details for the file torchml-0.1.0.tar.gz
.
File metadata
- Download URL: torchml-0.1.0.tar.gz
- Upload date:
- Size: 170.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.6 tqdm/4.61.2 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/1.5.0 colorama/0.4.4 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00dc110dd5a4d8943d82c466e0929d04d402f7786c6472c0a6c137886cf150ff |
|
MD5 | 2849823301f379b32e2c872001c52112 |
|
BLAKE2b-256 | 0f291c9858d16cfad1a6ad719e8748ec03f1bcd42bb52d535f26cb5c5b5b66eb |