Skip to main content

Python package for computer vision on camera trap images.

Project description

Torch Traps :leopard: :camera_flash:

https://img.shields.io/pypi/v/torchtraps.svg https://img.shields.io/travis/winzurk/torchtraps.svg Documentation Status

Python package for lighting :zap: fast wildlife camera trap image annotation based on PyTorch. :fire:

Install

$ pip install torchtraps

Fast Inference on Folder of Images

import torchtraps

torchtraps.lightning.kachow('path/to/image/folder')
Example Output

image

prediction

confidence

image1.jpg

‘jaguar’

0.99

image2.jpg

‘empty’

0.98

image3.jpg

‘agouti’

0.91

image4.jpg

‘empty’

0.95

image5.jpg

‘ocelot’

0.87

Features

  • Module for fast computer vision on camera trap images.

  • Based on PyTorch

History

0.1.0 (2020-03-30)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchtraps-0.1.2.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

torchtraps-0.1.2-py2.py3-none-any.whl (15.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torchtraps-0.1.2.tar.gz.

File metadata

  • Download URL: torchtraps-0.1.2.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4

File hashes

Hashes for torchtraps-0.1.2.tar.gz
Algorithm Hash digest
SHA256 5db8acaf79f187afe9e82caf5494556527888264be3d9d2b045bdb7a05083581
MD5 3c416cb8e45d0de1cbf7621a106b532b
BLAKE2b-256 997ed46ae260a949fcb9310bee45b8b259a547548e0aa942e1af7ebba10ec6c7

See more details on using hashes here.

File details

Details for the file torchtraps-0.1.2-py2.py3-none-any.whl.

File metadata

  • Download URL: torchtraps-0.1.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4

File hashes

Hashes for torchtraps-0.1.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 8ab5b6a5e90f77351d1b10980acac5316eff2c148319b8dc93acbd06eb539dfc
MD5 a472fa28368306814cac775bccfb4c0d
BLAKE2b-256 00349f75febbb04b1bd889247a3043adbfac9066d97f77f2c5900ee6b2fcba90

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page