Python package for computer vision on camera trap images.
Project description
Torch Traps :leopard: :camera_flash:
Python package for lighting :zap: fast wildlife camera trap image annotation based on PyTorch. :fire:
MIT license
Documentation: https://torchtraps.readthedocs.io.
Install
$ pip install torchtraps
Fast Inference on Folder of Images
import torchtraps
torchtraps.lightning.kachow('path/to/image/folder')
image |
prediction |
confidence |
---|---|---|
image1.jpg |
‘jaguar’ |
0.99 |
image2.jpg |
‘empty’ |
0.98 |
image3.jpg |
‘agouti’ |
0.91 |
image4.jpg |
‘empty’ |
0.95 |
image5.jpg |
‘ocelot’ |
0.87 |
Features
Module for fast computer vision on camera trap images.
Based on PyTorch
History
0.1.0 (2020-03-30)
First release on PyPI.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchtraps-0.1.2.tar.gz
(16.9 kB
view details)
Built Distribution
File details
Details for the file torchtraps-0.1.2.tar.gz
.
File metadata
- Download URL: torchtraps-0.1.2.tar.gz
- Upload date:
- Size: 16.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5db8acaf79f187afe9e82caf5494556527888264be3d9d2b045bdb7a05083581 |
|
MD5 | 3c416cb8e45d0de1cbf7621a106b532b |
|
BLAKE2b-256 | 997ed46ae260a949fcb9310bee45b8b259a547548e0aa942e1af7ebba10ec6c7 |
File details
Details for the file torchtraps-0.1.2-py2.py3-none-any.whl
.
File metadata
- Download URL: torchtraps-0.1.2-py2.py3-none-any.whl
- Upload date:
- Size: 15.8 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ab5b6a5e90f77351d1b10980acac5316eff2c148319b8dc93acbd06eb539dfc |
|
MD5 | a472fa28368306814cac775bccfb4c0d |
|
BLAKE2b-256 | 00349f75febbb04b1bd889247a3043adbfac9066d97f77f2c5900ee6b2fcba90 |