Skip to main content

TorchZQ: A simple PyTorch experiment runner.

Project description

TorchZQ: A simple PyTorch experiment runner.

Zouqi (『走起』 in Chinese) means "let's go". When you zouqi your experiment, the experiment will go with you.

Installation

Install from PyPI:

pip install torchzq

Install the latest version:

pip install git+https://github.com/enhuiz/torchzq@master

Run an Example

Training

$ zouqi example/config/mnist.yml train

Testing

$ zouqi example/config/mnist.yml test

TensorBoard

$ tensorboard --logdir logs

Supported Features

  • Model checkpoints
  • Logging
  • Gradient accumulation
  • Configuration file
  • Configuration file inheritance
  • TensorBoard
  • (c)GAN training (WGAN-GP)
  • FP16

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchzq-1.0.5.dev0.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

torchzq-1.0.5.dev0-py3-none-any.whl (15.1 kB view details)

Uploaded Python 3

File details

Details for the file torchzq-1.0.5.dev0.tar.gz.

File metadata

  • Download URL: torchzq-1.0.5.dev0.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for torchzq-1.0.5.dev0.tar.gz
Algorithm Hash digest
SHA256 cc824acd2fae93f5f96f2d94aa5d952934b11eb10c34425ece7b4b20a8f41d1c
MD5 dc0f88a899880c895e363effd62be11b
BLAKE2b-256 07a3a24ca0de47dd6263f4753e130645e8700c700c7284130a9f65116fe1a0ba

See more details on using hashes here.

File details

Details for the file torchzq-1.0.5.dev0-py3-none-any.whl.

File metadata

  • Download URL: torchzq-1.0.5.dev0-py3-none-any.whl
  • Upload date:
  • Size: 15.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for torchzq-1.0.5.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 be5c1d5bc1fcafa0792ddcaf07578d0bd857435e538d6cfd6979a01d1a4ad6e4
MD5 691f281b8d94af86fbda33c60f4cbad0
BLAKE2b-256 eee4ecd586a648c00ebf85136fd1a38c220eb2746eb7e652fc801e55d7e1854e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page