Skip to main content

Image Data Augmentation with Pytorch and Kornia

Project description

.. raw:: html


pyTORch augMENTOR

.. image:: https://img.shields.io/badge/License-Apache%202.0-blue.svg :target: https://opensource.org/licenses/Apache-2.0

.. image:: https://badge.fury.io/py/tormentor.svg :target: https://badge.fury.io/py/tormentor

.. image:: https://codecov.io/gh/anguelos/tormentor/branch/master/graph/badge.svg :target: https://codecov.io/gh/anguelos/tormentor/ :alt: Testing Coverage

.. image:: https://readthedocs.org/projects/tormentor/badge/?version=latest :target: https://tormentor.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

Image data augmentation with pytorch

Instalation:

Instaling current version with pip:

.. code:: bash

pip install tormentor
#pip3 install --user --upgrade git+https://github.com/anguelos/tormentor

Use Cases:

Augment single sample:

.. code-block:: python

python import torch, tormentor
img = torch.rand(3, 119,137)
mask = torch.ones([1, 119,137])
pc = (torch.rand(9),torch.rand(9))
aug = tormentor.Perspective()
new_img = aug(img)
aug(pc, img) # augment pointcloud and respective image
aug(pc, img, compute_img=False) # augment only pointcloud, img passed for dimensions
aug(pc, torch.empty([1, 320, 240]), compute_img=False) # augment only pointcloud, tensor passed for dimensions
aug(mask, is_mask=True) # augment mask

Augment batch:

.. code-block:: python

python import torch, tormentor
img = torch.rand(7,3, 119,137)
mask = torch.ones([7,1, 119,137])
pcl = [(torch.rand(9), torch.rand(9)) for _ in range(7)]
aug = tormentor.Rotate()
new_pcl, new_img = aug(pcl, img) # augment pointcloud and respective image
aug(pcl, img, compute_img=False) # augment only pointcloud, img passed for dimensions
aug(pcl, torch.empty([7, 1, 320, 240]), compute_img=False) # augment only pointcloud, tensor passed for dimensions
aug(mask, is_mask=True) # augment mask

Augment MSCoco compliant Dataset:

.. code-block:: python

import torchvision, tormentor ds = torchvision.datasets.CocoDetection(root="./tmp_data/coco/val2017", annFile="./tmp_data/coco/annotations/instances_val2017.json", transform=torchvision.transforms.ToTensor()); aug_ds = tormentor.AugmentedCocoDs(ds, tormentor.Wrap(), device="cpu", add_mask=True) inputs, target, validity = aug_ds[3] # accesing a single sample aug_ds.show_augmentation(3)

.. figure:: docs/source/_static/img/example.png

If the device is a GTX 980 Ti time is 0.1 sec. for larger images, the GPU efficiency grows up to x10.

Change Augmentation Distributions:

.. code-block:: python

import math, tormentor, torch, torchvision tile = lambda x: torchvision.transforms.ToPILImage()(torchvision.utils.make_grid(x.cpu(), nrow=12)) generic_aug = tormentor.Rotate() RotateABit = tormentor.Rotate.override_distributions(radians = tormentor.Uniform((0., math.pi / 8))) custom_aug = RotateABit() batch = torch.rand(24, 3, 32, 38, device="cuda") tile(torch.cat([batch, generic_aug(batch), custom_aug(batch)], dim=0)).show()

.. figure:: docs/source/_static/img/rotation.png :alt: Rotation Example

Random Augmentation Type:

.. code-block:: python

import math, tormentor, torch, torchvision tile = lambda x: torchvision.transforms.ToPILImage()(torchvision.utils.make_grid(x.cpu(), nrow=12)) augmentation_types = [tormentor.Perspective, tormentor.Wrap, tormentor.PlasmaBrightness] CustomAugmentation = tormentor.AugmentationChoice.create(augmentation_types) aug = CustomAugmentation() batch = torch.rand(24, 3, 64, 64, device="cuda") tile(aug(batch)).show()

checkup on determinism:

tile(aug(batch)).show()

.. figure:: docs/source/_static/img/choice.png

Augmentation Cascade:

.. code-block:: python

import math, tormentor, torch, torchvision tile = lambda x: torchvision.transforms.ToPILImage()(torchvision.utils.make_grid(x.cpu(), nrow=12)) augmentation_types = [tormentor.Perspective, tormentor.PlasmaBrightness] CustomAugmentation = tormentor.AugmentationCascade.create(augmentation_types) aug = CustomAugmentation() batch = torch.rand(24, 3, 64, 64, device="cuda") tile(aug(batch)).show()

.. figure:: docs/source/_static/img/cascade.png

Create Custom Augmentation Class:

.. code-block:: python

python import tormentor

class Lense(tormentor.SpatialImageAugmentation):
    center_x = tormentor.Uniform((-.3, .3))
    center_y = tormentor.Uniform((-.3, .3))
    gamma = tormentor.Uniform((1., 1.))

    def generate_batch_state(self, sampling_tensors):
        batch_sz = sampling_tensors[0].size(0)
        gamma = type(self).gamma(batch_sz, device=sampling_tensors[0].device).view(-1)
        center_x = type(self).center_x(batch_sz, device=sampling_tensors[0].device).view(-1)
        center_y = type(self).center_y(batch_sz, device=sampling_tensors[0].device).view(-1)
        return center_x, center_y, gamma

    @classmethod
    def functional_sampling_field(cls, sampling_field, center_x, center_y, gamma):
        field_x, field_y = sampling_field
        center_x = center_x.unsqueeze(dim=1).unsqueeze(dim=1)
        center_y = center_y.unsqueeze(dim=1).unsqueeze(dim=1)
        gamma = gamma.unsqueeze(dim=1).unsqueeze(dim=1)
        distance = ((center_x - field_x)**2 + (center_y - field_y)**2) ** .5
        #distance = 1/(1+distance)
        field_x, field_y = (field_x + field_x * distance ** gamma) , (field_y + field_y * distance ** gamma)
        return field_x, field_y

.. figure:: docs/source/_static/img/lence.png

Design Principles

  • Simplify the definition of augmentations
  • Every instance of every augmentation class is deterministic.
  • Inputs and Outputs are pytorch tensors and pytorch is prefered for all computation.
  • All data are by default 4D: [batch x channel x width x height].
  • Single sample augmentation: batch-size must always be 1.
  • Threadsafety: Every augmentation instance must be threadsafe.
  • Input/Output is restricted to one or more channels of 2D images.
  • Augmentations either preserve channels or the preserve pixels (space).
  • The augmentation class has also its factory as a classmethod
  • Restrict dependencies on torch and kornia (at least for the core packages).

Factory Dictates Constructor

In order to minimize the code needed to define an augmentation. The factory defines the random distributions from wich augmentation sample. The inherited constructor handles random seeds. The method forward_sample_img samples from the random distributions aug_parameters and employs them.

Internal Conventions

  • Pointclouds are represented in image coordinates Sampling fields in normalised -1,1 coordinates
  • By default we write code for batch processing
  • Determinism is strictly handled by BaseAugmentation and all augment_*** methods.
  • An augmentation must reside in a single device
  • All randomness must be coming from pytorch
  • Spatial augmentation samplingfields are normalised to -1, 1 so their effect magnitude is proporsional to image size (They are top down).

Cite

.. code-block:: python

@misc{tormentor,
    doi = {10.48550/ARXIV.2204.03776},
    url = {https://arxiv.org/abs/2204.03776},
    author = {Nicolaou, Anguelos and Christlein, Vincent and Riba, Edgar and Shi, Jian and Vogeler, Georg and Seuret, Mathias},
    keywords = {Computer Vision and Pattern Recognition (cs.CV), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {TorMentor: Deterministic dynamic-path, data augmentations with fractals},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}

Accepted at ECV 2022 <https://sites.google.com/view/ecv2022/home>_ .

Download (pdf) <https://arxiv.org/pdf/2204.03776.pdf>_ .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tormentor-0.1.3.tar.gz (50.5 kB view details)

Uploaded Source

File details

Details for the file tormentor-0.1.3.tar.gz.

File metadata

  • Download URL: tormentor-0.1.3.tar.gz
  • Upload date:
  • Size: 50.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.8.0 tqdm/4.49.0 CPython/3.6.9

File hashes

Hashes for tormentor-0.1.3.tar.gz
Algorithm Hash digest
SHA256 4b3c01d99476bcafc91c51f141065ad39348d6b45e358cf4db8688bfeec7d9bc
MD5 93a97f3a117ca41776c6143593125630
BLAKE2b-256 7945c6f8ea6487cbe08b63b5ec9b4e3381dd73dad95a7ada2887c09e6932a545

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page