Skip to main content

Some implementations of randomized, matrix-free algorithms for estimating matrix traces, log determinants, diagonals, and diagonals of inverses.

Project description

randomized-trace-logdet-diag-diaginv

Some Python implementations of randomized, matrix-free algorithms for estimating $\text{tr}(A)$, $\log \det(A)$, $\text{diag}(A)$, and $\text{diag}(A^{-1})$. Here $A$ is SPD or SPSD. We also provide implementations of non-randomized methods requiring access to matrices for convenience.

This package is a work-in-progress. The goal is to implement some of the algorithms detailed in the references below.

References

[1] M.F. Hutchinson (1989). A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines. Communications in Statistics - Simulation and Computation, 18(3), 1059-1076.

[2] Avron, H., & Toledo, S. (2011). Randomized Algorithms for Estimating the Trace of an Implicit Symmetric Positive Semi-Definite Matrix. J. ACM, 58(2).

[3] Roosta-Khorasani, F., & Ascher, U. (2015). Improved Bounds on Sample Size for Implicit Matrix Trace Estimators. Foundations of Computational Mathematics, 15(5), 1187–1212.

[4] Saibaba, A., Alexanderian, A., & Ipsen, I. (2017). Randomized matrix-free trace and log-determinant estimators. Numerische Mathematik, 137(2), 353–395.

[5] C. Bekas, E. Kokiopoulou, & Y. Saad (2007). An estimator for the diagonal of a matrix. Applied Numerical Mathematics, 57(11), 1214-1229.

[6] Christos Boutsidis, Petros Drineas, Prabhanjan Kambadur, Eugenia-Maria Kontopoulou, & Anastasios Zouzias (2017). A randomized algorithm for approximating the log determinant of a symmetric positive definite matrix. Linear Algebra and its Applications, 533, 95-117.

[7] Han, I., Malioutov, D.M., & Shin, J. (2015). Large-scale log-determinant computation through stochastic Chebyshev expansions. International Conference on Machine Learning.

[8] Chen, J. (2016). How Accurately Should I Compute Implicit Matrix-Vector Products When Applying the Hutchinson Trace Estimator? SIAM J. Sci. Comput., 38.

[9] Meyer, R.A., Musco, C., Musco, C., & Woodruff, D.P. (2020). Hutch++: Optimal Stochastic Trace Estimation. Proceedings of the SIAM Symposium on Simplicity in Algorithms, 2021, 142-155 .

[10] Persson, D., Cortinovis, A., & Kressner, D. (2021). Improved variants of the Hutch++ algorithm for trace estimation. SIAM J. Matrix Anal. Appl., 43, 1162-1185.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tracelogdetdiag-0.0.1.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

tracelogdetdiag-0.0.1-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file tracelogdetdiag-0.0.1.tar.gz.

File metadata

  • Download URL: tracelogdetdiag-0.0.1.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.12

File hashes

Hashes for tracelogdetdiag-0.0.1.tar.gz
Algorithm Hash digest
SHA256 f65cde92139342387b3bc647b35bf523f1dc703605cb729e2a46c344ecaf33b6
MD5 d949b11a0bd35a94378191ea263ae21f
BLAKE2b-256 546a0dc3e7767c66988b8b2205f20f5c47693285f0bfe76bd998e77e70897283

See more details on using hashes here.

File details

Details for the file tracelogdetdiag-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for tracelogdetdiag-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c22a45584d883c7247eee68c8b5186c39d02f35a7a8d8049b1ec95f9ebfdeff6
MD5 476adebebb8ae9cc5e91a5727398a07f
BLAKE2b-256 6d5111925d1ca4c38cce0044aa1d12838922da9a234e185ac6639f464bfa0c86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page