Some implementations of randomized, matrix-free algorithms for estimating matrix traces, log determinants, diagonals, and diagonals of inverses.
Project description
randomized-trace-logdet-diag-diaginv
Some Python implementations of randomized, matrix-free algorithms for estimating $\text{tr}(A)$, $\log \det(A)$, $\text{diag}(A)$, and $\text{diag}(A^{-1})$. Here $A$ is SPD or SPSD. We also provide implementations of non-randomized methods requiring access to matrices for convenience.
This package is a work-in-progress. The goal is to implement some of the algorithms detailed in the references below.
References
[1] M.F. Hutchinson (1989). A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines. Communications in Statistics - Simulation and Computation, 18(3), 1059-1076.
[2] Avron, H., & Toledo, S. (2011). Randomized Algorithms for Estimating the Trace of an Implicit Symmetric Positive Semi-Definite Matrix. J. ACM, 58(2).
[3] Roosta-Khorasani, F., & Ascher, U. (2015). Improved Bounds on Sample Size for Implicit Matrix Trace Estimators. Foundations of Computational Mathematics, 15(5), 1187–1212.
[4] Saibaba, A., Alexanderian, A., & Ipsen, I. (2017). Randomized matrix-free trace and log-determinant estimators. Numerische Mathematik, 137(2), 353–395.
[5] C. Bekas, E. Kokiopoulou, & Y. Saad (2007). An estimator for the diagonal of a matrix. Applied Numerical Mathematics, 57(11), 1214-1229.
[6] Christos Boutsidis, Petros Drineas, Prabhanjan Kambadur, Eugenia-Maria Kontopoulou, & Anastasios Zouzias (2017). A randomized algorithm for approximating the log determinant of a symmetric positive definite matrix. Linear Algebra and its Applications, 533, 95-117.
[7] Han, I., Malioutov, D.M., & Shin, J. (2015). Large-scale log-determinant computation through stochastic Chebyshev expansions. International Conference on Machine Learning.
[8] Chen, J. (2016). How Accurately Should I Compute Implicit Matrix-Vector Products When Applying the Hutchinson Trace Estimator? SIAM J. Sci. Comput., 38.
[9] Meyer, R.A., Musco, C., Musco, C., & Woodruff, D.P. (2020). Hutch++: Optimal Stochastic Trace Estimation. Proceedings of the SIAM Symposium on Simplicity in Algorithms, 2021, 142-155 .
[10] Persson, D., Cortinovis, A., & Kressner, D. (2021). Improved variants of the Hutch++ algorithm for trace estimation. SIAM J. Matrix Anal. Appl., 43, 1162-1185.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tracelogdetdiag-0.0.1.tar.gz
.
File metadata
- Download URL: tracelogdetdiag-0.0.1.tar.gz
- Upload date:
- Size: 9.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f65cde92139342387b3bc647b35bf523f1dc703605cb729e2a46c344ecaf33b6 |
|
MD5 | d949b11a0bd35a94378191ea263ae21f |
|
BLAKE2b-256 | 546a0dc3e7767c66988b8b2205f20f5c47693285f0bfe76bd998e77e70897283 |
File details
Details for the file tracelogdetdiag-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: tracelogdetdiag-0.0.1-py3-none-any.whl
- Upload date:
- Size: 10.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c22a45584d883c7247eee68c8b5186c39d02f35a7a8d8049b1ec95f9ebfdeff6 |
|
MD5 | 476adebebb8ae9cc5e91a5727398a07f |
|
BLAKE2b-256 | 6d5111925d1ca4c38cce0044aa1d12838922da9a234e185ac6639f464bfa0c86 |