Skip to main content

Experiment tracking module

Project description

track

Installation

Just use:

pip install track-ml

Right now this requires python 3.

Usage

Report various metrics of interest, with automatically configured and persisted logging.

import track 

def training_function(param1=0.01, param2=10):
    local = "~/track/myproject"
    remote = "s3://my-track-bucket/myproject"
    with track.trial(local, remote, param_map={"param1": param1, "param2": param2}):
        model = create_model()
        for epoch in range(100):
            model.train()
            loss = model.get_loss()
            track.metric(iteration=epoch, loss=loss)
            track.debug("epoch {} just finished with loss {}", epoch, loss)
            model.save(os.path.join(track.trial_dir(), "model{}.ckpt".format(epoch)))

Inspect existing experiments

$ python -m track.trials --local_dir ~/track/myproject trial_id "start_time>2018-06-28" param2
trial_id    start_time                param2
8424fb387a 2018-06-28 11:17:28.752259 10

Plot results

import track
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

proj = track.Project("~/track/myproject", "s3://my-track-bucket/myproject")
most_recent = proj.ids["start_time"].idxmax()
most_recent_id = proj.ids["trial_id"].iloc[[most_recent]]
res = proj.results(most_recent_id)
plt.plot(res[["iteration", "loss"]].dropna())
plt.savefig("loss.png")

Recover saved artifacts

model.load(proj.fetch_artifact(most_recent_id[0], 'model10.ckpt'))
model.serve_predictions()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

track-ml-0.1.1.tar.gz (12.5 kB view details)

Uploaded Source

Built Distribution

track_ml-0.1.1-py3-none-any.whl (15.1 kB view details)

Uploaded Python 3

File details

Details for the file track-ml-0.1.1.tar.gz.

File metadata

  • Download URL: track-ml-0.1.1.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.5.5

File hashes

Hashes for track-ml-0.1.1.tar.gz
Algorithm Hash digest
SHA256 6c7648684474fd6fc470deed50fd1836c10d0a7b6681303448f01319ea435ad8
MD5 50d1b0cd83cf4d0712977ed51118e40b
BLAKE2b-256 f02b220c19d193eed1b2fe354f6d65aa84823b27c6f35b0d4cd3d7605347beab

See more details on using hashes here.

File details

Details for the file track_ml-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: track_ml-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 15.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.5.5

File hashes

Hashes for track_ml-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b39ad7c0c3bbac1c2f030bd57aca9244ed9c7516de78d87aa0a47eaddf7fe869
MD5 d0ded1c58b401341ce2b816ac8a6913e
BLAKE2b-256 f02b2d46a31e91aa3d764c886c450de7b4d6cf82b1bc2ca27ee54650ed1d0836

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page