Transformers for Transcripts
Project description
transcript_transformer
Deep learning utility functions for processing and annotating transcript genome data.
transcript_transformer
is constructed in concordance with the creation of TIS Transformer, (paper, repository) and RIBO-former (to be released). transcript_transformer
makes use of the Performer architecture to allow for the annotations and processing of transcripts at single nucleotide resolution. The package makes use of h5py
for data loading and pytorch-lightning
as a high-level interface for training and evaluation for deep learning models. transcript_transformer
is designed to allow a high degree of modularity, but has not been tested for every combination of arguments, and can therefore return errors.
๐ Installation
pytorch
needs to be separately installed by the user.
Next, the package can be installed running
pip install transcript-transformer
๐ User guide
The library features a tool that can be called directly by the command transcript_transformer
, featuring three main functions: pretrain
, train
and predict
. Data loading is achieved using the h5
format, handled by the h5py
package.
Data loading
Information is separated by transcript and information type. Information belonging to a single transcript is mapped according to the index they populate within each h5py.dataset
, used to store different types of information. Variable length arrays are used to store the sequences and annotations of all transcripts under a single data set.
Sequences are stored using integer arrays following: {A:0, T:1, C:2, G:3, N:4}
An example data.h5
has the following structure:
data.h5 (h5py.file)
transcript (h5py.group)
โโโ tis (h5py.dataset, dtype=vlen(int))
โโโ contig (h5py.dataset, dtype=str)
โโโ id (h5py.dataset, dtype=str)
โโโ seq (h5py.dataset, dtype=vlen(int))
โโโ ribo (h5py.group)
โ โโโ SRR0000001 (h5py.group)
โ โ โโโ 5 (h5py.group)
โ โ โ โโโ data (h5py.dataset, dtype=vlen(int))
โ โ โ โโโ indices (h5py.dataset, dtype=vlen(int))
โ โ โ โโโ indptr (h5py.dataset, dtype=vlen(int))
โ โ โ โโโ shape (h5py.dataset, dtype=vlen(int))
โ โโโ ...
โ ....
Ribosome profiling data is saved by reads mapped to each transcript position. Mapped reads are furthermore separated by their read lengths. As ribosome profiling data is often sparse, we made use of scipy.sparse
to save data within the h5
format. This allows us to save space and store matrix objects as separate arrays. Saving and loading of the data is achieved using the h5max package.
Dictionary .json
files are used to specify the application of data to transcript_transformer
. When no sequence information or ribosome profiling data is used, either entry seq
or ribo
is set to false
. For each ribosome profiling dataset, custom P-site offsets can be set per read length.
{
"h5_path":"data.h5",
"exp_path":"transcript",
"y_path":"tis",
"chrom_path":"contig",
"id_path":"id",
"seq":"seq",
"ribo": {
"SRR000001/5": {
"25": 7,
"26": 7,
"27": 8,
"28": 10,
"29": 10,
"30": 11,
"31": 11,
"32": 7,
"33": 7,
"34": 9,
"35": 9,
}
}
}
pretrain
Conform with transformers trained for natural language processing objectives, models can first be trained following a self-supervised learning objective. Using a masked language modelling approach, models are tasked to predict the classes of the masked input tokens. As such, a model is trained the 'semantics' of transcript sequences. The approach is similar to the one described by Zaheer et al. . This approach has not been using ribosome profiling data.
transcript_transformer pretrain -h
positional arguments:
input_data path to json file specifying input data (see README.md)
val list of chromosomes used for the validation set
test list of chromosomes used for the test set
--mask_frac float fraction of input positions that are masked (default: 0.85)
--rand_frac float fraction of masked inputs that are randomized (default: 0.1)
Example
transcript_transformer pretrain input_data.json --val 1 13 --test 2 14 --max_epochs 70 --gpu 1
train
The package supports training the models architectures listed under transcript_transformer/models.py
. The function expects a .json
file containing the input data info (see data loading). It is possible to start training upon pre-trained models using the --transfer_checkpoint
functionality.
transcript_transformer train -h
positional arguments:
dict_path dictionary (json) path containing input data file info
options:
--val contigs in data_path folder used for validation (default: None)
--test contigs in data_path folder used for testing (default: None)
--ribo_offset offset mapped ribosome reads by read length (default: False)
--name name of the model (default: )
--log_dir log dir (default: lightning_logs)
--transfer_checkpoint Path to checkpoint pretrained model (default: None)
Example
transcript_transformer train input_data.json --val 1 13 --test 2 14 --max_epochs 70 --transfer_checkpoint lightning_logs/mlm_model/version_0/ --name experiment_1 --gpu 1
predict
The predict function returns probabilities for all nucleotide positions on the transcript and can be saved using the .npy
or .h5
format. In addition to reading from .h5
files, the function supports the use of a single RNA sequence as input or a path to a .fa
file. Note that .fa
and .npy
formats are only supported for models that only apply transcript nucleotide information.
transcript_transformer predict -h
positional arguments:
input_data path to JSON dict (h5) or fasta file, or RNA sequence
input_type type of input
checkpoint path to checkpoint of trained model
options:
-h, --help show this help message and exit
--test contigs to predict on (h5 input format only) (default: None)
--ribo_offset offset mapped ribosome reads by read length (default: False)
--output_type file type of output predictions (default: npy)
--save_path save file path (default: results)
Example
transcript_transformer predict AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGGT RNA --output_type npy models/example_model.ckpt
transcript_transformer predict data/example_data.fa fa --output_type npy models/example_model.ckpt
Output data
The model returns predictions for every nucleotide on the transcripts. For each transcript, the array lists the transcript label and model outputs. The tool can output predictions using both the npy
or h5
format.
>>> results = np.load('results.npy', allow_pickle=True)
>>> results[0]
array(['>ENST00000410304',
array([2.3891837e-09, 7.0824785e-07, 8.3791534e-09, 4.3269135e-09,
4.9220684e-08, 1.5315813e-10, 7.0196869e-08, 2.4103475e-10,
4.5873511e-10, 1.4299616e-10, 6.1071654e-09, 1.9664975e-08,
2.9255699e-07, 4.7719610e-08, 7.7600065e-10, 9.2305236e-10,
3.3297397e-07, 3.5771163e-07, 4.1942007e-05, 4.5123262e-08,
1.0270607e-11, 1.1841109e-09, 7.9038587e-10, 6.5511790e-10,
6.0892291e-13, 1.6157842e-11, 6.9130129e-10, 4.5778301e-11,
2.1682500e-03, 2.3315516e-09, 2.2578116e-11], dtype=float32)],
dtype=object)
Other function flags
Various other function flags dictate the properties of the dataloader, model architecture and training procedure.
Dataloader
data loader arguments
--min_seq_len int minimum sequence length of transcripts (default: 0)
--max_seq_len int maximum sequence length of transcripts (default: 30000)
--leaky_frac float fraction of samples that escape conditions (default: 0.05)
--num_workers int number of data loader workers (default: 12)
--max_transcripts_per_batch int
maximum of transcripts per batch (default: 400)
Model architecture
Model:
Transformer arguments
--transfer_checkpoint str
Path to checkpoint pretrained model (default: None)
--lr float learning rate (default: 0.001)
--decay_rate float linearly decays learning rate for every epoch (default: 0.95)
--num_tokens int number of unique input tokens (default: 7)
--dim int dimension of the hidden states (default: 30)
--depth int number of layers (default: 6)
--heads int number of attention heads in every layer (default: 6)
--dim_head int dimension of the attention head matrices (default: 16)
--nb_features int number of random features, if not set, will default to (d * log(d)),where d is the dimension
of each head (default: 80)
of each head (default: 80)
--feature_redraw_interval int
how frequently to redraw the projection matrix (default: 100)
--generalized_attention boolean
applies generalized attention functions (default: True)
--kernel_fn boolean generalized attention function to apply (if generalized attention) (default: ReLU())
--reversible boolean reversible layers, from Reformer paper (default: True)
--ff_chunks int chunk feedforward layer, from Reformer paper (default: 10)
--use_scalenorm boolean
use scale norm, from 'Transformers without Tears' paper (default: False)
--use_rezero boolean use rezero, from 'Rezero is all you need' paper (default: False)
--ff_glu boolean use GLU variant for feedforward (default: True)
--emb_dropout float embedding dropout (default: 0.1)
--ff_dropout float feedforward dropout (default: 0.1)
--attn_dropout float post-attn dropout (default: 0.1)
--local_attn_heads int
the amount of heads used for local attention (default: 4)
--local_window_size int
window size of local attention (default: 256)
Pytorch lightning trainer
pl.Trainer:
--logger [str_to_bool]
Logger (or iterable collection of loggers) for experiment tracking. A ``True`` value uses
the default ``TensorBoardLogger``. ``False`` will disable logging. (default: True)
--checkpoint_callback [str_to_bool]
If ``True``, enable checkpointing. It will configure a default ModelCheckpoint callback if
there is no user-defined ModelCheckpoint in
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks`. (default: True)
--default_root_dir str
Default path for logs and weights when no logger/ckpt_callback passed. Default:
``os.getcwd()``. Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/'
(default: None)
--gradient_clip_val float
0 means don't clip. (default: 0.0)
--gradient_clip_algorithm str
'value' means clip_by_value, 'norm' means clip_by_norm. Default: 'norm' (default: norm)
--process_position int
orders the progress bar when running multiple models on same machine. (default: 0)
--num_nodes int number of GPU nodes for distributed training. (default: 1)
--num_processes int number of processes for distributed training with distributed_backend="ddp_cpu" (default: 1)
--gpus _gpus_allowed_type
number of gpus to train on (int) or which GPUs to train on (list or str) applied per node
(default: None)
--auto_select_gpus [str_to_bool]
If enabled and `gpus` is an integer, pick available gpus automatically. This is especially
useful when GPUs are configured to be in "exclusive mode", such that only one process at a
time can access them. (default: False)
--tpu_cores _gpus_allowed_type
How many TPU cores to train on (1 or 8) / Single TPU to train on [1] (default: None)
--log_gpu_memory str None, 'min_max', 'all'. Might slow performance (default: None)
--progress_bar_refresh_rate int
How often to refresh progress bar (in steps). Value ``0`` disables progress bar. Ignored
when a custom progress bar is passed to :paramref:`~Trainer.callbacks`. Default: None, means
a suitable value will be chosen based on the environment (terminal, Google COLAB, etc.).
(default: None)
--overfit_batches _int_or_float_type
Overfit a fraction of training data (float) or a set number of batches (int). (default: 0.0)
--track_grad_norm float
-1 no tracking. Otherwise tracks that p-norm. May be set to 'inf' infinity-norm. (default:
-1)
--check_val_every_n_epoch int
Check val every n train epochs. (default: 1)
--fast_dev_run [str_to_bool_or_int]
runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es) of train, val and test to
find any bugs (ie: a sort of unit test). (default: False)
--accumulate_grad_batches int
Accumulates grads every k batches or as set up in the dict. (default: 1)
--max_epochs int Stop training once this number of epochs is reached. Disabled by default (None). If both
max_epochs and max_steps are not specified, defaults to ``max_epochs`` = 1000. (default:
None)
--min_epochs int Force training for at least these many epochs. Disabled by default (None). If both
min_epochs and min_steps are not specified, defaults to ``min_epochs`` = 1. (default: None)
--max_steps int Stop training after this number of steps. Disabled by default (None). (default: None)
--min_steps int Force training for at least these number of steps. Disabled by default (None). (default:
None)
--max_time str Stop training after this amount of time has passed. Disabled by default (None). The time
duration can be specified in the format DD:HH:MM:SS (days, hours, minutes seconds), as a
:class:`datetime.timedelta`, or a dictionary with keys that will be passed to
:class:`datetime.timedelta`. (default: None)
--limit_train_batches _int_or_float_type
How much of training dataset to check (float = fraction, int = num_batches) (default: 1.0)
--limit_val_batches _int_or_float_type
How much of validation dataset to check (float = fraction, int = num_batches) (default: 1.0)
--limit_test_batches _int_or_float_type
How much of test dataset to check (float = fraction, int = num_batches) (default: 1.0)
--limit_predict_batches _int_or_float_type
How much of prediction dataset to check (float = fraction, int = num_batches) (default: 1.0)
--val_check_interval _int_or_float_type
How often to check the validation set. Use float to check within a training epoch, use int
to check every n steps (batches). (default: 1.0)
--flush_logs_every_n_steps int
How often to flush logs to disk (defaults to every 100 steps). (default: 100)
--log_every_n_steps int
How often to log within steps (defaults to every 50 steps). (default: 50)
--accelerator str Previously known as distributed_backend (dp, ddp, ddp2, etc...). Can also take in an
accelerator object for custom hardware. (default: None)
--sync_batchnorm [str_to_bool]
Synchronize batch norm layers between process groups/whole world. (default: False)
--precision int Double precision (64), full precision (32) or half precision (16). Can be used on CPU, GPU
or TPUs. (default: 32)
--weights_summary str
Prints a summary of the weights when training begins. (default: top)
--weights_save_path str
Where to save weights if specified. Will override default_root_dir for checkpoints only. Use
this if for whatever reason you need the checkpoints stored in a different place than the
logs written in `default_root_dir`. Can be remote file paths such as `s3://mybucket/path` or
'hdfs://path/' Defaults to `default_root_dir`. (default: None)
--num_sanity_val_steps int
Sanity check runs n validation batches before starting the training routine. Set it to `-1`
to run all batches in all validation dataloaders. (default: 2)
--truncated_bptt_steps int
Deprecated in v1.3 to be removed in 1.5. Please use
:paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` instead.
(default: None)
--resume_from_checkpoint str
Path/URL of the checkpoint from which training is resumed. If there is no checkpoint file at
the path, start from scratch. If resuming from mid-epoch checkpoint, training will start
from the beginning of the next epoch. (default: None)
--profiler str To profile individual steps during training and assist in identifying bottlenecks. (default:
None)
--benchmark [str_to_bool]
If true enables cudnn.benchmark. (default: False)
--deterministic [str_to_bool]
If true enables cudnn.deterministic. (default: False)
--reload_dataloaders_every_epoch [str_to_bool]
Set to True to reload dataloaders every epoch. (default: False)
--auto_lr_find [str_to_bool_or_str]
If set to True, will make trainer.tune() run a learning rate finder, trying to optimize
initial learning for faster convergence. trainer.tune() method will set the suggested
learning rate in self.lr or self.learning_rate in the LightningModule. To use a different
key set a string instead of True with the key name. (default: False)
--replace_sampler_ddp [str_to_bool]
Explicitly enables or disables sampler replacement. If not specified this will toggled
automatically when DDP is used. By default it will add ``shuffle=True`` for train sampler
and ``shuffle=False`` for val/test sampler. If you want to customize it, you can set
``replace_sampler_ddp=False`` and add your own distributed sampler. (default: True)
--terminate_on_nan [str_to_bool]
If set to True, will terminate training (by raising a `ValueError`) at the end of each
training batch, if any of the parameters or the loss are NaN or +/-inf. (default: False)
--auto_scale_batch_size [str_to_bool_or_str]
If set to True, will `initially` run a batch size finder trying to find the largest batch
size that fits into memory. The result will be stored in self.batch_size in the
LightningModule. Additionally, can be set to either `power` that estimates the batch size
through a power search or `binsearch` that estimates the batch size through a binary search.
(default: False)
--prepare_data_per_node [str_to_bool]
If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0
will prepare data (default: True)
--plugins str Plugins allow modification of core behavior like ddp and amp, and enable custom lightning
plugins. (default: None)
--amp_backend str The mixed precision backend to use ("native" or "apex") (default: native)
--amp_level str The optimization level to use (O1, O2, etc...). (default: O2)
--distributed_backend str
deprecated. Please use 'accelerator' (default: None)
--move_metrics_to_cpu [str_to_bool]
Whether to force internal logged metrics to be moved to cpu. This can save some gpu memory,
but can make training slower. Use with attention. (default: False)
--multiple_trainloader_mode str
How to loop over the datasets when there are multiple train loaders. In 'max_size_cycle'
mode, the trainer ends one epoch when the largest dataset is traversed, and smaller datasets
reload when running out of their data. In 'min_size' mode, all the datasets reload when
reaching the minimum length of datasets. (default: max_size_cycle)
--stochastic_weight_avg [str_to_bool]
Whether to use `Stochastic Weight Averaging (SWA)(default: False)
โ๏ธ Package features
- creation of
h5
file from genome assemblies and ribosome profiling datasets - bucket sampling
- pre-training functionality
- data loading for sequence and ribosome data
- custom target labels
- function hooks for custom data loading and pre-processing
- model architectures
- application of trained networks
- test scripts
๐๏ธ Citation
@article {Clauwaert2021.11.18.468957,
author = {Clauwaert, Jim and McVey, Zahra and Gupta, Ramneek and Menschaert, Gerben},
title = {TIS Transformer: Re-annotation of the human proteome using deep learning},
elocation-id = {2021.11.18.468957},
year = {2021},
doi = {10.1101/2021.11.18.468957},
URL = {https://www.biorxiv.org/content/early/2021/11/19/2021.11.18.468957},
eprint = {https://www.biorxiv.org/content/early/2021/11/19/2021.11.18.468957.full.pdf},
journal = {bioRxiv}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file transcript transformer-0.1.4.tar.gz
.
File metadata
- Download URL: transcript transformer-0.1.4.tar.gz
- Upload date:
- Size: 11.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 50d8b742ab4db79efff701adfd3d8fddceff7207b1571713cb799227c078129d |
|
MD5 | 121f6f3d258ee0b646a69a3fe08082c5 |
|
BLAKE2b-256 | 6ee3541dbbc000d688b89fae7c6a421b4a9eb85a4577f24d8910e6842879e85f |
Provenance
File details
Details for the file transcript_transformer-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: transcript_transformer-0.1.4-py3-none-any.whl
- Upload date:
- Size: 20.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a6e5a2bd558a488332cc3478919cd64efa9bd5f71fc8edb9045cc4686dab003 |
|
MD5 | d025b12c9d46e8155715cf9e0184d6d6 |
|
BLAKE2b-256 | eb307e5f8f436b29f6cb37982a5c164edea3ac34501b774036735aa161604911 |