Skip to main content

TreeProfiler is command-line tool for profiling metadata table into phylogenetic tree with descriptive analysis and output visualization

Project description

TreeProfiler Overview

TreeProfiler is a command line tool designed to automate the annotation of large phylogenetic trees using a wide array of data sources. It also facilitates the visual exploration of these annotations as phylogenetic profiles, making it a powerful resource for researchers working with complex biological data.

Key Features:

  • Automated Annotation that integrates diverse metadata into phylogenetic trees, and summarizes annotation in internal nodes, including:
    • Categorical/Numerical metadata in TSV/CSV format
    • Taxonomic Annotation of NCBI/GTDB taxonomy database
    • Functional Annotation from eggnog-mapper output
    • Domain annotation from pfam/smart
    • Multiple Sequence Alignment annotation
  • Visual Exploration that allows for the detailed examination of annotated trees, aiding in the interpretation and presentation of data.
  • Analytic Methods for computing analysis from leaf nodes:
    • Ancestral Character Reconstruction
    • Phylogenetic Signal Delta Statistic]
    • Lineage Specificity Analysis

The official documentation of TreeProfiler is in https://dengzq1234.github.io/TreeProfiler/ where provides detailed instructions with examples.

If you have any doubts, please drop a line in issue or contact https://x.com/deng_ziqi

Full manuscript of TreeProfiler is in https://doi.org/10.1101/2023.09.21.558621

If you use TreeProfiler, please cite:

Ziqi Deng, Ana Hernández-Plaza, Jaime Huerta-Cepas. 
"TreeProfiler: A command-line tool for computing and visualizing phylogenetic profiles against large trees"  
bioRxiv (2023) doi: 10.1101/2023.09.21.558621

Table of Contents

Introduction

TreeProfiler is command-line tool for profiling metadata table into phylogenetic tree with descriptive analysis and output visualization

Installation

Dependencies

TreeProfiler requires

  • Python version >= 3.9
  • ETE Toolkit v4
  • biopython
  • selenium
  • scipy
  • matplotlib
  • numba
  • pastml (custom)

Quick install via pip

# Install ETE Toolkit v4
pip install --force-reinstall https://github.com/etetoolkit/ete/archive/ete4.zip


# Install TreeProfiler dependencies
pip install biopython selenium scipy matplotlib numba

# Install custom pastml package for ete4
pip install "git+https://github.com/dengzq1234/pastml.git@pastml2ete4" 

# Install TreeProfiler tool via pip
pip install TreeProfiler

# or installing main repo
pip install https://github.com/compgenomicslab/TreeProfiler/archive/main.zip
# or development mode for latestest update
pip install git+https://github.com/compgenomicslab/TreeProfiler@dev-repo

Quick Start with examples dataset

TreeProfiler provide various example dataset for testing in examples/ or https://github.com/compgenomicslab/TreeProfiler/tree/main/examples, each directory consists a demo script *_demo.sh for quick starting different functions in TreeProfiler which alreadyh as annotate-plot pipeline of example data. User can fast explore different example tree with different visualizations. Here is the demonstration:

# execute demo script of example1
cd examples/basic_example1/
sh ./example1_demo.sh

Annotate example tree with two metadata tables
start parsing...
Time for parse_csv to run:  0.001968860626220703
Time for load_metadata_to_tree to run:  0.0003094673156738281
Time for merge annotations to run:  0.05160331726074219
Time for annotate_taxa to run:  4.76837158203125e-07
Visualize properties categorical data random_type in rectangle_layout, numerical data sample1, sample2 in heatmap_layout and barplot_layout.
Current trees in memory: 0
Added tree example with id 0.
 * Serving Flask app 'ete4.smartview.gui.server' (lazy loading)
 * Environment: production
   WARNING: This is a development server. Do not use it in a production deployment.
   Use a production WSGI server instead.
 * Debug mode: on
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

As the session starts in local server http://127.0.0.1:5000, annotated tree and selected properties are visualized at the interactive session. treeprofiler interface Here is detailed introduction of interactive session of visualization(here)

Check other tutorial scripts

# display demo script of each example
./examples/basic_example1/example1_demo.sh
./examples/automatic_query/highlight_demo.sh
./examples/automatic_query/collapse_demo.sh
./examples/automatic_query/prune_demo.sh
./examples/basic_example2/example2_demo.sh
./examples/taxonomy_example/ncbi/ncbi_demo.sh
./examples/taxonomy_example/gtdb/gtdb_demo.sh
./examples/pratical_example/progenome3/progenome_demo.sh
./examples/pratical_example/gtdb_r202/gtdbv202full_demo.sh
./examples/pratical_example/gtdb_r202/gtdbv202lite_demo.sh
./examples/pratical_example/emapper/emapper_demo.sh

Manual installation

Install ETE v4

Quick way

pip install https://github.com/etetoolkit/ete/archive/ete4.zip

For local development To install ETE in a local directory to help with the development, you can:

  • Clone this repository (git clone https://github.com/etetoolkit/ete.git)
  • Install dependecies
    • If you are using conda: conda install -c conda-forge cython bottle brotli numpy pyqt
    • Otherwise, you can install them with pip install <dependencies>
    • Build and install ete4 from the repository's root directory: pip install -e .

(In Linux there may be some cases where the gcc library must be installed, which can be done with conda install -c conda-forge gcc_linux-64)

Install TreeProfiler

Install dependencies

# install BioPython, selenium, scipy via conda
conda install -c conda-forge biopython selenium scipy matplotlib
# or pip
pip install biopython selenium scipy matplotlib

Install TreeProfiler

# install TreeProfiler
git clone https://github.com/compgenomicslab/TreeProfiler
cd TreeProfiler/
python setup.py install

Or

# install directly
pip install https://github.com/dengzq1234/TreeProfiler/archive/refs/tags/v1.1.0.tar.gz

Input files

TreeProfiler takes following file types as input

Input Filetype
Tree newick, ete
Metadata tar.gz, tsv
  • ete format is a novel format developed to solve the situation we encounter in the previous step, annotated tree can be recover easily with all the annotated data without changing the data type. Besides, the ete format optimized the tree file size after mapped with its associated data. Hence it's very handy for programers in their own script. At this moment we can only view the ete format in treeprofiler, but we will make the ete format more universal to other phylogenetic software.
  • Metadata input could be single or multiple files, either tar.gz compressed file(s) which contains multiple .tsv or plain .tsv file(s).

Basic Usage

TreeProfiler has two main subcommand:

  • annotate
  • plot

The first one annotate is used to annotate your input tree and corresponding metadata, TreeProfiler will map all the metadata into corresponding tree node. In this step, annotated tree will be generated in newick and ete format

treeprofiler annotate --tree tree.nw --input-type newick --metadata metadata.tsv --outdir ./

The second subcommand plot is used to visualize tree with associated metadata. By default, treeprofiler will launch an interactive session at localhost for user to explore input tree.

treeprofiler plot --tree tree_annotated.nw --input-type newick 

or

treeprofiler plot --tree tree_annotated.ete --input-type ete 

Using TreeProfiler

In this Tutorial we will use TreeProfiler and demostrate basic usage with data in examples/

tree examples/
examples/
├── automatic_query
│   ├── basic_example1_metadata1.tsv
│   ├── basic_example1.nw
│   ├── collapse_demo.sh
│   ├── highlight_demo.sh
│   └── prune_demo.sh
├── basic_example1
│   ├── basic_example1_metadata1.tsv
│   ├── basic_example1_metadata2.tsv
│   ├── basic_example1.nw
│   └── example1_demo.sh
├── basic_example2
│   ├── diauxic.array
│   ├── diauxic.nw
│   ├── example2_demo.sh
│   ├── FluA_H3_AA.fas
│   ├── MCC_FluA_H3_Genotype.txt
│   └── MCC_FluA_H3.nw
├── pratical_example
│   ├── emapper
│   │   ├── 7955.ENSDARP00000116736.aln.faa
│   │   ├── 7955.ENSDARP00000116736.nw
│   │   ├── 7955.out.emapper.annotations
│   │   ├── 7955.out.emapper.pfam
│   │   ├── 7955.out.emapper.smart.out
│   │   ├── emapper_demo.sh
│   │   ├── nifH.faa.aln
│   │   ├── nifH.nw
│   │   ├── nifH.out.emapper.annotations
│   │   └── nifH.out.emapper.pfam
│   ├── gtdb_r202
│   │   ├── ar122_metadata_r202_lite.tar.gz
│   │   ├── bac120_metadata_r202_lite.tar.gz
│   │   ├── gtdbv202full_demo.sh
│   │   ├── gtdbv202lite_demo.sh
│   │   ├── gtdbv202.nw
│   │   ├── merge_gtdbtree.py
│   │   └── progenome3.tar.gz
│   └── progenome3
│       ├── progenome3.nw
│       ├── progenome3.tsv
│       └── progenome_demo.sh
└── taxonomy_example
    ├── gtdb
    │   ├── gtdb_demo.sh
    │   ├── gtdb_example1.nw
    │   └── gtdb_example1.tsv
    └── ncbi
        ├── ncbi_demo.sh
        ├── ncbi_example.nw
        └── ncbi_example.tsv

Parsing Input tree

Tree format

TreeProfiler accpept input tree in .nw or .ete by putting --input-type {newick,ete} flag to identify. By default, TreeProfiler will automatically detech the format of tree. The difference between .nw and .ete:

  • newick format is more universal and be able to used in different other phylogenetic software although associated data of tree nodes will be considered as plain text.

  • ete format is a novel format developed to solve the situation we encounter in the previous step, annotated tree can be recover easily with all the annotated data without changing the data type. Besides, the ete format optimized the tree file size after mapped with its associated data. Hence it's very handy for programers in their own script. At this moment we can only view the ete format in treeprofiler, but we will make the ete format more universal to other phylogenetic software. Hence using ete format in plot subcommand is highly reccomended

Tree parser

TreeProfiler provides argument --internal {name,support} to specify newick tree when it include values in internal node. [default: name]

newick leaves internal_node value internal_parser
(A:0.5, B:0.5)Internal_C:0.5; A, B Internal_C name
(A:0.5, B:0.5)0.99:0.5; A, B 0.99 support

annotate, Annotate metadata into tree

TreeProfiler annotate subcommand is the step that annotate input metadata to target tree. As a result, itwill generate the following output file:

  1. <input_tree> + _annotated.nw, newick format with annotated tree
  2. <input_tree> + _annotated.ete, ete format with annotated tree
  3. <input_tree> + _annotated_prop2type.txt, config file where store the datatype of each annotated properties
  4. <input_tree> + _annotated.tsv, metadata in tab-separated values format with annotated and summarized internal nodes information.

In the following sub session we will describe the usage of following arguments in annotate step for metadata:

Argument Description
-d, --metadata METADATA [METADATA ...] <metadata.csv> .csv, .tsv filename
-sep, --metadata-sep METADATA_SEP Column separator of metadata table [default: \t]
--data-matrix DATA_MATRIX [DATA_MATRIX ...] <datamatrix.csv> .csv, .tsv. Numerical matrix data metadata table as array to tree, please do not provide column headers in this file, filename will become the property name in the tree.
--no-headers Metadata table doesn't contain columns name, namespace col+index will be assigned as the key of property such as col1.
--duplicate Treeprofiler will aggregate duplicated metadata to a list as a property if metadata contains duplicated row.

Basic Metadata in TSV/CSV Format

TreeProfiler allows users to input metadata in tsv/csv file by setting --metadata <filename.tsv|.csv> and -s <seperator>. By default, the first column of metadata should be names of target tree leaves and metadata should contain column names for each column of metadata.

TreeProfiler allows user to annotate more than one metadata inputs to tree such as --metadata table1.tsv table2.tsv.

Check metadata

cd examples/basic_example0/
tree ./
./
├── boolean.tsv
├── categorical_duplicated.tsv
├── categorical.tsv
├── data.array
├── demo1.tree
├── numerical.tsv
└── show_tree_props.py

# check metadata structure
head categorical.tsv
name,categorical1
Taxa_0,A
Taxa_1,B
Taxa_2,B
Taxa_3,C

Run annotate subcommand

## annotate tree with more than one metadata tsv, seperated by `,`
# set the correct filename and seperator
treeprofiler annotate \
-t demo1.tree \
--metadata categorical.tsv \
-sep , \
-o .

After annotation, treeprofiler will generate annotated tree

ls demo1*
demo1_annotated.ete  demo1_annotated.nw  demo1_annotated.tsv  demo1_prop2type.txt  demo1.tree

Now we can check annotated tree

# show tree's properties
python show_tree_props.py demo1_annotated.nw

Target tree internal node Root contains the following properties:  
{'categorical1_counter': 'A--1||B--2||C--2', 'name': 'Root'}
Target tree leaf node Taxa_0 contains the following propertiies:  
{'name': 'Taxa_0', 'dist': 0.190563, 'categorical1': 'A'}

Metadata TSV/CSV as a Numerical Data Matrix

treeprofiler can handle the whole tsv/csv file as one property and annotate it to related leaves, by using --data-matrix <filename.tsv|.csv> It must be numerical data matrix and without headers. Once annotated the property of data-matrix will be named by the filename (see example below)

The difference between --data-matrix and --metadata is that the former sees the whole metadata file as a node property and stores the rows as an array in leaf nodes, and the latter sees each column from metadata as each single property of leaf nodes.

Using data array file data.array from the previous example

# annotated data.array file to tree
treeprofiler annotate \
-t demo1.tree \
--data-matrix data.array \
-sep , \
-o .

# data.array is stored as one property in tree node and value is stored as array
python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{
'data.array_avg': '1.0244|-0.667|-1.7740000000000002|-0.8620000000000001|-0.6552', 
'data.array_max': '3.671|1.937|4.362|1.585|2.746', 
'data.array_min': '-2.591|-2.356|-4.825|-3.326|-2.479', 
'data.array_std': '2.3121192529798287|1.5156064132880938|3.524138873540599|1.9937640783202009|1.906460531980665', 
'data.array_sum': '5.122|-3.335|-8.870000000000001|-4.3100000000000005|-3.276', 
'name': 'Root'
}
target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'Taxa_0', 
'dist': 0.190563, 
'data.array': '-2.591|1.937|-3.898|0.447|-1.349'
}

Metadata Without Column Names

If metadata doesn’t have headers, by setting --no-headers to set the metadata properly, therefore treeprofiler will name each column by col+<column number> as the property key in each leaf node, such as col1, col2, etc.

example

# data.array doesn't have headers for each column 
head data.array
Taxa_0,-2.591,1.937,-3.898,0.447,-1.349
Taxa_1,3.366,-1.871,4.362,1.585,-2.479
Taxa_2,0,-0.098,0,-3.326,2.746
Taxa_3,3.671,-0.947,-4.509,-3.131,-2.194

# need to add --no-headers flag to tell treeprofiler
treeprofiler annotate \
-t demo1.tree \
--metadata data.array \
-sep , \
--no-headers \
-o .

# check properties
python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{'col1_avg': '1.92825', 
'col1_max': '3.671', 
'col1_min': '0.0', 
'col1_std': '3.463526916666666', 
'col1_sum': '7.713', 
'col2_avg': '-1.318', 
...}

target tree leaf node Taxa_0 contains the following propertiies:  
{'name': 'Taxa_0', 
'dist': 0.190563, 
'col1': '-2.591', 
'col2': '1.937', 
'col3': '-3.898', 
'col4': '0.447', 
'col5': '-1.349'}

Missing Value Detection

Metadata column which fullfills one of the following criterias will be consider as missing value:

  • Entirely symbolic characters. Such as +, -, ~, ., etc.
  • The exact strings none, None, null, Null, or NaN.
  • An empty string (zero characters).

Missing value will replaced by string 'NaN' in the corresponding property.

Unmapped Tree Leaf Property Detection

If Metadata doesn't cover input tree leaf, tree leaf will be unannotated.

Handling Duplicated Leaf Names in Metadata

In general, treeprofiler expects each row of metadata corresponding to one leaf, such as

head categorical.tsv
#name,categorical1
Taxa_0,A
Taxa_1,B
Taxa_2,B
Taxa_3,C
Taxa_4,C

Although treeprofiler can handle metadata with rows with duplicated leafnames such as

head categorical_duplicated.tsv
#name,categorical1
Taxa_0,A
Taxa_0,B
Taxa_2,B
Taxa_2,C
Taxa_3,C
Taxa_3,A
Taxa_4,C

In order to do so, users need to add --duplicate , by doing so, metadata from the same leaf will be aggregate into the same column. Such as the Taxa_0 from the above table, at the end value A and B will be both annotated to property categorical1(see above demo). If not, treeprofielr will take one the first row of metadata that appear as the metadata for related leaf!

example

treeprofiler annotate \
-t demo1.tree \
-d categorical_duplicated.tsv \
-sep , \
--duplicate \
-o .

python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{'categorical1_counter': 'A--2||B--2||C--3', 'name': 'Root'}
target tree leaf node Taxa_0 contains the following propertiies:  
{'name': 'Taxa_0', 'dist': 0.190563, 'categorical1': 'A|B'}

Specifying Data Types for Metadata Columns

Although TreeProfiler can automatically detect datatype of each column, users still can determine the datatype using the following arguments using:

Argument Description
--text-prop TEXT_PROP [TEXT_PROP ...] names of columns which need to be read as categorical data
--multiple-text-prop MULTIPLE_TEXT_PROP [MULTIPLE_TEXT_PROP ...] names of columns which need to be read as categorical data containing more than one value and separated by , such as GO:0000003,GO:0000902,GO:0000904,GO:0003006
--num-prop NUM_PROP [NUM_PROP ...] names of columns which need to be read as numerical data
--bool-prop BOOL_PROP [BOOL_PROP ...] names of columns which need to be read as boolean data
--text-prop-idx TEXT_PROP_IDX [TEXT_PROP_IDX ...] 1 2 3 or [1-5] index of columns which need to be read as categorical data
--num-prop-idx NUM_PROP_IDX [NUM_PROP_IDX ...] 1 2 3 or [1-5] index columns which need to be read as numerical data
--bool-prop-idx BOOL_PROP_IDX [BOOL_PROP_IDX ...] 1 2 3 or [1-5] index columns which need to be read as boolean data

Annotate Metadata to Internal Nodes

At the above example, we only mapped metadata to leaf nodes, in this example, we will also profile internal nodes annotation and analysis of their children nodes. Argument that in related to summary methods are:

Argument Applied datatype Description Summarized properties Internal node
--num-stat {all,sum,avg,max,min,std,none} numerical data matrix Descriptive Statistic (average, sum, max, min, standard deviation) <prop name>_avg
<prop name>_sum
<prop name>_max
<prop name>_min
<prop name>_std
--counter-stat {raw,relative,none} str
boolean
list
Raw/Relative Counter <prop name>_counter
--num-stat {all,sum,avg,max,min,std,none} float
int
Descriptive Statistic (average, sum, max, min, standard deviation) <prop name>_avg
<prop name>_sum
<prop name>_max
<prop name>_min
<prop name>_std
--column-summary-method COLUMN_SUMMARY_METHOD [COLUMN_SUMMARY_METHOD ...] all Specify summary method for individual columns in the format ColumnName=Method, such as --column-summary-method sample1=none sample2=avg random_type=relative alignment=none

TreeProfiler can infer automatically the datatype of each column in your metadata, including

  • list (seperate by , )
  • string (categorcial data)
  • numerical(numerical data, float or integer)
  • booleans

Internal node will summurize children nodes information according to their datatypes.

demo tree

      ╭╴A
╴root╶┤
      │   ╭╴B
      ╰╴D╶┤
          ╰╴C

demo metadata

#name text_property multiple_text_property numerical_property bool_property
A vowel a,b,c 10 True
B consonant b,c,d 4 False
C consonant c,d,e 9 True

Treeprofiler will infer the datatypes of above metadata and adpot different summary method:

- text_property multiple_text_property numerical_property bool_property
datatype string list float bool
method counter counter average,sum,max,min,standard deviation counter
  • Categorical

boolean and text properties (categorical data) of leaf nodes will be summarized as counters in internal nodes, currently users can choose using raw (default), relative or none for counter. Users can use --counter-stat {raw,relative,none} to choose the counter, it will automatically apply to all categorical properties.

After annotation, internal nodes will be summarized. If property was summarize with counter, in internal node will be named as <property_name>_counter

Users can choose either counter is raw or relative count by using --counter-stat

internal_node properties statistic method
<prop name>_counter raw(default), relative
internal_node text_property_counter multiple_text_property_counter bool_property_counter
D consonant--2 b--1||c--2||d--2||e--1 True--1||False--1
root vowel--1||consonant--2 a--2||b--2||c--3||d--2||e--1 True--2||False--1

Example

# raw counter (default)
treeprofiler annotate \
-t demo1.tree \
--metadata categorical.tsv \
-sep , \
--counter-stat raw \
-o ./ 

python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{
'categorical1_counter': 'A--1||B--2||C--2', 
'name': 'Root'
}
target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'Taxa_0', 
'dist': 0.190563, 
'categorical1': 'A'
}

#relative counter to calculate the percentage
treeprofiler annotate \
-t demo1.tree \
--metadata categorical.tsv \
-sep , \
--counter-stat relative \
-o ./

python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{
'categorical1_counter': 'A--0.20||B--0.40||C--0.40', 
'name': 'Root'
}
target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'Taxa_0', 
'dist': 0.190563, 
'categorical1': 'A'
}

#set to none
treeprofiler annotate \
-t demo1.tree \
--metadata categorical.tsv \
-sep , \
--counter-stat none \
-o ./

python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{'name': 'Root'}
target tree leaf node Taxa_0 contains the following propertiies:  
{'name': 'Taxa_0', 'dist': 0.190563, 'categorical1': 'A'}
  • Numerical

By default, numerical feature will be calculated all the descriptive statistic, but users can choose specific one to be calculated by using --num-stat {all, sum, avg, max, min, std, none}. all (default) means it will conduct all the statistic. none means annotation will only conduct in leaf nodes.

If property was numerical data, in internal node will be named as

internal_node properties statistic method
<prop name>_avg average
<prop name>_sum sum
<prop name>_max maximum
<prop name>_min minimum
<prop name>_std standard deviation

Noticed that --num-stat will also work on --data-matrix data.

In our demo, it would be:

internal_node numerical_property_avg numerical_property_sum numerical_property_max numerical_property_max numerical_property_max
D 6.5 13 9 4 2.5
root 7.67 23 10 4 2.32

Example:

# conduct all statistic (by default)
treeprofiler annotate \
-t demo1.tree \
--metadata numerical.tsv \
-sep , \
--num-stat all \
-o ./

python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{
'name': 'Root', 
'random_column1_avg': '0.5384554640742852', 
'random_column1_max': '0.7817176831389784', 
'random_column1_min': '0.3276816717486982', 
'random_column1_std': '0.028430041000376213', 
'random_column1_sum': '2.692277320371426',
....
}
target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'Taxa_0', 
'dist': 0.190563, 
'random_column1': '0.45303222603186877', 
'random_column2': '1.9801547427961053', 
'random_column3': '43.0'}

# conduct only average 
treeprofiler annotate \
-t demo1.tree \
--metadata numerical.tsv \
-sep , \
--num-stat avg \
-o ./

python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{
'name': 'Root', 
'random_column1_avg': '0.5384554640742852', 
'random_column2_avg': '0.12655333321138568', 
'random_column3_avg': '52.2'
}

target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'Taxa_0', 
'dist': 0.190563, 
'random_column1': '0.45303222603186877', 
'random_column2': '1.9801547427961053', 
'random_column3': '43.0'}


# conduct none statistic
treeprofiler annotate \
-t demo1.tree \
--metadata numerical.tsv \
-sep , \
--num-stat none \
-o ./

python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{'name': 'Root'}
target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'Taxa_0', 
'dist': 0.190563, 
'random_column1': '0.45303222603186877', 
'random_column2': '1.9801547427961053', 
'random_column3': '43.0'
}

# data matrix is also effected by --num-stat setting

# only average 
treeprofiler annotate \
-t demo1.tree \
--data-matrix data.array \
-sep , \
--num-stat avg \
-o ./

python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{
'data.array_avg': '1.0244|-0.667|-1.7740000000000002|-0.8620000000000001|-0.6552', 
'name': 'Root'
}
target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'Taxa_0', 
'dist': 0.190563,  
'data.array': '-2.591|1.937|-3.898|0.447|-1.349'
}

Customizing Summary Methods for Different Columns

Using --column-summary-method can specify the summary method of each properties, simply add <property name>=<summary method> . For categorical data, options are raw,relative,none; for numerical data, options are all, sum, avg, max, min, std, none .

such as --column-summary-method sample1=none sample2=avg random_type=relative alignment=none

Noted that --data-matrix can be effected by --column-summary-method setting, in this case filename of the data matrix is property name, such as--data-matrix file.tsv --column-summary-method file.tsv=avg

example: here we use three different metadata: categorical tsv, numerical tsv and data matrix

# cusomtize different summary methods for different column/property
treeprofiler annotate \
-t demo1.tree \
--metadata categorical.tsv numerical.tsv \
--data-matrix data.array \
-sep , \
--column-summary-method \
categorical1=relative \
random_column1=all \
random_column2=none \
random_column3=sum \
data.array=avg \
-o ./

python show_tree_props.py demo1_annotated.nw
target tree internal node Root contains the following properties:  
{
'name': 'Root', 
'categorical1_counter': 'A--0.20||B--0.40||C--0.40', 
'random_column1_avg': '0.5384554640742852', 
'random_column1_max': '0.7817176831389784', 
'random_column1_min': '0.3276816717486982', 
'random_column1_std': '0.028430041000376213', 
'random_column1_sum': '2.692277320371426', 
'random_column3_sum': '261.0',
'data.array_avg': '1.0244|-0.667|-1.7740000000000002|-0.8620000000000001|-0.6552'
}
target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'Taxa_0', 
'dist': 0.190563,  
'categorical1': 'A', 
'random_column1': '0.45303222603186877', 
'random_column2': '1.9801547427961053', 
'random_column3': '43.0',
'data.array': '-2.591|1.937|-3.898|0.447|-1.349'
}

Taxonomic annotation

If input metadada containcs taxon data, TreeProfiler allows users to process taxonomic annotation with either GTDB or NCBI database.

Argument Description
--taxon-column TAXON_COLUMN Choose the column in metadata which represents taxon for activating the taxonomic annotation. Default is the first column, which should be the column of leaf_name.
--taxadb {NCBI,GTDB,customdb} NCBI or GTDB, choose the Taxonomic Database for annotation.
--taxon-delimiter TAXON_DELIMITER Delimiter of taxa columns. [default: None]·
--taxa-field TAXA_FIELD Field of taxa name after delimiter. [default: 0]
--taxa-dump TAXA_DUMP Path to taxonomic database dump file for a specific version, such as GTDB taxadump (https://github.com/etetoolkit/ete-data/raw/main/gtdb_taxonomy/gtdblatest/gtdb_latest_dump.tar.gz) or NCBI taxadump (https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz).
--gtdb-version {95,202,207,214,220} GTDB version for taxonomic annotation, such as 220. If it is not provided, the latest version will be used.
--ignore-unclassified Ignore unclassified taxa in taxonomic annotation.

In this part we will demostrate the usage of taxonomic annotation in examples of examples/taxonomy_example

cd examples/taxonomy_example
ls ./
demo3.tree  demo4.tree  gtdb202dump.tar.gz  missing_gtdb_v202.tree  ncbi.tree
demo3.tsv   demo4.tsv   gtdb_v202.tree      missing_ncbi.tree       show_tree_props.py

Using Different Taxonomic Databases from GTDB/NCBI

To start taxonomic annotation, using --taxon-column and --taxadb to locate where is the taxon and which taxonomic databases to be used. If taxon is leaf name, then using --taxon-column name , otherwise --taxon-column <prop_name> which refers to the column in the metadata.

  • NCBI examples
# check example tree
cat ncbi.tree
((9606, 9598), 10090);

# run taxonomic annotation and locate taxon column in leaf name
treeprofiler annotate \
-t ncbi.tree \
--taxon-column name \
--taxadb ncbi \
-o ./

# check annotation results
python show_tree_props.py ncbi_annotated.nw
Target tree internal node Root contains the following properties:  
{
'common_name': '', 
'evoltype': 'S', 
'lca': 'no rank-cellular organisms|superkingdom-Eukaryota|clade-Eumetazoa|phylum-Chordata|superclass-Sarcopterygii|kingdom-Metazoa|class-Mammalia|subphylum-Craniata|superorder-Euarchontoglires', 
'lineage': '1|131567|2759|33154|33208|6072|33213|33511|7711|89593|7742|7776|117570|117571|8287|1338369|32523|32524|40674|32525|9347|1437010|314146', 
'name': 'Root', 
'named_lineage': 'root|Eukaryota|Eumetazoa|Chordata|Vertebrata|Gnathostomata|Sarcopterygii|Eutheria|Tetrapoda|Amniota|Theria|Opisthokonta|Metazoa|Bilateria|Deuterostomia|Mammalia|Craniata|Teleostomi|Euteleostomi|cellular organisms|Euarchontoglires|Dipnotetrapodomorpha|Boreoeutheria', 'rank': 'superorder', 
'sci_name': 'Euarchontoglires', 
'species': '10090|9606|9598', 
'taxid': '314146'
}
Target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': '9606', 
'dist': 1.0, 
'common_name': 
'Homo sapiens', 
'lca': 'no rank-cellular organisms|superkingdom-Eukaryota|clade-Eumetazoa|phylum-Chordata|superclass-Sarcopterygii|order-Primates|parvorder-Catarrhini|family-Hominidae|genus-Homo|species-Homo sapiens|kingdom-Metazoa|class-Mammalia|subphylum-Craniata|subfamily-Homininae|superorder-Euarchontoglires|infraorder-Simiiformes|superfamily-Hominoidea|suborder-Haplorrhini', 
'lineage': '1|131567|2759|33154|33208|6072|33213|33511|7711|89593|7742|7776|117570|117571|8287|1338369|32523|32524|40674|32525|9347|1437010|314146|9443|376913|314293|9526|314295|9604|207598|9605|9606', 
'named_lineage': 'root|Eukaryota|Eumetazoa|Chordata|Vertebrata|Gnathostomata|Sarcopterygii|Eutheria|Primates|Catarrhini|Hominidae|Homo|Homo sapiens|Tetrapoda|Amniota|Theria|Opisthokonta|Metazoa|Bilateria|Deuterostomia|Mammalia|Craniata|Teleostomi|Euteleostomi|cellular organisms|Homininae|Euarchontoglires|Simiiformes|Hominoidea|Haplorrhini|Dipnotetrapodomorpha|Boreoeutheria', 
'rank': 'species', 
'sci_name': 'Homo sapiens', 
'species': '9606', 
'taxid': '9606'
}
  • GTDB examples

For gtdb taxa, users can choose --gtdb-version {95,202,207,214,220} to select certain version, if not, latest gtdb db will be used.

# check example tree
cat gtdb_v202.tree 
(GB_GCA_011358815.1:1,(RS_GCF_000019605.1:1,(RS_GCF_003948265.1:1,GB_GCA_003344655.1:1):0.5):0.5);

# default using latest version, in this case on tree from version 202, it should go empty
treeprofiler annotate \
-t gtdb_v202.tree \
--taxon-column name \
--taxadb gtdb \
-o ./

python show_tree_props.py gtdb_v202_annotated.nw
Target tree internal node Root contains the following properties:  
{
'common_name': '', 
'evoltype': 'S', 
'lca': '', 'lineage': '', 
'name': 'Root', 
'named_lineage': '', 
'rank': 'Unknown', 
'sci_name': 'None', 
'species': 'RS_GCF_000019605.1|RS_GCF_003948265.1|GB_GCA_011358815.1|GB_GCA_003344655.1', 
'taxid': 'None'
}
Target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'GB_GCA_011358815.1', 
'dist': 1.0, 
'common_name': '', 
'named_lineage': '', 
'rank': 'Unknown', 
'sci_name': '', 
'species': 'GB_GCA_011358815.1', 
'taxid': 'GB_GCA_011358815.1'
}

#annotate tree using the proper version of GTDB 
treeprofiler annotate \
-t gtdb_v202.tree \
--taxon-column name \
--taxadb gtdb \
--gtdb-version 202 \
-o ./

# now it's correctly annotated
python show_tree_props.py gtdb_v202_annotated.nw
Target tree internal node Root contains the following properties:  
{
'common_name': '', 
'evoltype': 'S', 
'lca': 'superkingdom-d__Archaea|phylum-p__Thermoproteota|class-c__Korarchaeia|order-o__Korarchaeales|family-f__Korarchaeaceae|genus-g__Korarchaeum', 
'lineage': '1|2|79|2172|2173|2174|2175', 'name': 'Root', 
'named_lineage': 'root|d__Archaea|p__Thermoproteota|c__Korarchaeia|o__Korarchaeales|f__Korarchaeaceae|g__Korarchaeum', 
'rank': 'genus', 'sci_name': 'g__Korarchaeum', 
'species': 'RS_GCF_003948265.1|GB_GCA_011358815.1|RS_GCF_000019605.1|GB_GCA_003344655.1', 
'taxid': 'g__Korarchaeum'
}
Target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'GB_GCA_011358815.1', 
'dist': 1.0, 
'common_name': '', 
'lca': 'superkingdom-d__Archaea|phylum-p__Thermoproteota|class-c__Korarchaeia|order-o__Korarchaeales|family-f__Korarchaeaceae|genus-g__Korarchaeum|species-s__Korarchaeum cryptofilum|subspecies-s__Korarchaeum cryptofilum', 
'named_lineage': 'root|d__Archaea|p__Thermoproteota|c__Korarchaeia|o__Korarchaeales|f__Korarchaeaceae|g__Korarchaeum|s__Korarchaeum cryptofilum|GB_GCA_011358815.1', 
'rank': 'subspecies', 
'sci_name': 's__Korarchaeum cryptofilum', 
'species': 'GB_GCA_011358815.1', 
'taxid': 'GB_GCA_011358815.1'
}

Identifying Taxon Names in Different Metadata Fields/Columns

When Taxon properties are embeded in different column or field in metadata, treeprofiler provides --taxon-column, --taxon-delimiter and --taxa-field to identify taxon term in order to process taxonomic annotation sucessfully. Here is summary of different cases with corresponding setting.

metadata taxon to be identified command line setting
#leafname col1
9598 wt
9598 default
#leafname col1
7739.XP_002609184.1 wt
7739 --taxon-column <default> --taxon-delimiter . --taxa-field 0
#leafname ncbi_id
leaf_A 7739
7739 --taxon-column ncbi_id --taxon-delimiter <default> --taxa-field <default>
#leafname ncbi_id
leaf_A 7739.XP_002609184.1
7739 --taxon-column ncbi_id --taxon-delimiter . --taxa-field 0
#leafname col1
RS_GCF_001560035.1 wt
RS_GCF_001560035.1 default
#leafname gtdb_id
leaf_A d__Archaea;p__Asgardarchaeota;c__Heimdallarchaeia;o__UBA460;f__Kariarchaeaceae;g__LC-2;s__LC-2 sp001940725
s__LC-2 sp001940725 --taxon-column gtdb_id --taxon-delimiter ; --taxa-field -1

examples:

# check example tree and metadata
cat demo3.tree
(Taxa_2:0.471596,((Taxa_0:0.767844,Taxa_1:0.792161)0.313833:0.684109,Taxa_3:0.805286):0.188666);

cat demo3.tsv
#name	gtdb_taxid
Taxa_0	GB_GCA_011358815.1@sample1
Taxa_1	RS_GCF_000019605.1@sample2
Taxa_2	RS_GCF_003948265.1@sample3
Taxa_3	GB_GCA_003344655.1@sample4

# therefore, locate taxa id correctly
treeprofiler annotate \
-t demo3.tree \
-d demo3.tsv \
--taxon-column gtdb_taxid \
--taxadb gtdb \
--gtdb-version 202 \
--taxon-delimiter @ \
--taxa-field 0 \
-o ./

python show_tree_props.py demo3_annotated.nw
Target tree internal node Root contains the following properties:  
{
'common_name': '', 
'evoltype': 'S', 
'lca': 'superkingdom-d__Archaea|phylum-p__Thermoproteota|class-c__Korarchaeia|order-o__Korarchaeales|family-f__Korarchaeaceae|genus-g__Korarchaeum', 
'name': 'Root', 
'named_lineage': 'root|d__Archaea|p__Thermoproteota|c__Korarchaeia|o__Korarchaeales|f__Korarchaeaceae|g__Korarchaeum', 
'rank': 'genus', 
'sci_name': 'g__Korarchaeum', 
'species': 'Taxa_3|Taxa_0|Taxa_1|Taxa_2', 
'taxid': 'g__Korarchaeum'
}
Target tree leaf node contains the following propertiies:  
{
'name': 'Taxa_2', 
'dist': 0.471596, 
'common_name': '', 
'gtdb_taxid': 'RS_GCF_003948265.1', 
'lca': 'superkingdom-d__Archaea|phylum-p__Thermoproteota|class-c__Korarchaeia|order-o__Korarchaeales|family-f__Korarchaeaceae|genus-g__Korarchaeum|species-s__Korarchaeum cryptofilum|subspecies-s__Korarchaeum cryptofilum', 
'named_lineage': 'root|d__Archaea|p__Thermoproteota|c__Korarchaeia|o__Korarchaeales|f__Korarchaeaceae|g__Korarchaeum|s__Korarchaeum cryptofilum|RS_GCF_003948265.1', 
'rank': 'subspecies', 
'sci_name': 's__Korarchaeum cryptofilum', 
'species': 'Taxa_2', 
'taxid': 'RS_GCF_003948265.1'
}

Ignoring Unclassified Taxonomic Annotations

Taxonomic annotation will annotate the internal nodes based on the taxa of leaf nodes, but if leaf node has unknown taxonomic information, the internal nodes will return unknown annotation. Using --ignore-unclassified to ignore the unknown annotation from leaves

# check tree with unknown taxa
(Taxa_1:1,(RS_GCF_000019605.1:1,(Taxa_2:1,GB_GCA_003344655.1:1):0.5):0.5);

# normal way to annotate tree will cause unknown annotation
treeprofiler annotate \
-t missing_gtdb_v202.tree \
--taxon-column name \
--taxadb gtdb \
--gtdb-version 202 \
-o ./

python show_tree_props.py missing_gtdb_v202_annotated.nw
Target tree internal node Root contains the following properties:  
{
'common_name': '', 
'evoltype': 'S', 
'lca': '',  
'name': 'Root', 
'named_lineage': '', 
'rank': 'Unknown', 
'sci_name': 'None', 
'species': 'Taxa_2|GB_GCA_003344655.1|RS_GCF_000019605.1|Taxa_1',
 'taxid': 'None'
 }
Target tree leaf node contains the following propertiies:  
{
'name': 'Taxa_1', 
'dist': 1.0, 
'common_name': '', 
'named_lineage': '', 
'rank': 'Unknown', 
'sci_name': '', 
'species': 'Taxa_1', 
'taxid': 'Taxa_1'
}

# now adding --ignore-unclassified
treeprofiler annotate \
-t missing_gtdb_v202.tree \
--taxon-column name \
--taxadb gtdb \
--gtdb-version 202 \
--ignore-unclassified \
-o ./

python show_tree_props.py missing_gtdb_v202_annotated.nw
Target tree internal node Root contains the following properties:  
{
'common_name': '', 
'evoltype': 'S', 
'lca': 'superkingdom-d__Archaea|phylum-p__Thermoproteota|class-c__Korarchaeia|order-o__Korarchaeales|family-f__Korarchaeaceae|genus-g__Korarchaeum', 
'name': 'Root',
'named_lineage': 'root|d__Archaea|p__Thermoproteota|c__Korarchaeia|o__Korarchaeales|f__Korarchaeaceae|g__Korarchaeum', 
'rank': 'genus', 
'sci_name': 'g__Korarchaeum', 
'species': 'Taxa_1|RS_GCF_000019605.1|GB_GCA_003344655.1|Taxa_2', 
'taxid': 'g__Korarchaeum'
}
Target tree leaf node contains the following propertiies:  
{
'name': 'Taxa_1', 
'dist': 1.0, 
'common_name': '', 
'named_lineage': '', 
'rank': 'Unknown', 
'sci_name': '', 
'species': 'Taxa_1', 
'taxid': 'Taxa_1'
}

Functional Annotation

we use example in examples/pratical_example/emapper

Annotating Multiple Sequence Alignments

treeprofiler will can anntotate msa to tree and automatically calculate the consesus sequence in the internal node (fixed threshold 0.7), alignment will stored in nodes with property name alignment. Using --column-summary-method alignment=none can switch off the function for calculating consensus sequence for internal nodes.

# annotate alignment
treeprofiler annotate --tree nifH.nw --alignment nifH.faa.aln

# mute consensus sequence
treeprofiler annotate \
--tree nifH.nw \
--alignment nifH.faa.aln \
--column-summary-method alignment=none \
-o ./

Annotating EggNOG-Mapper Output and Domain information

EggNOG-mapper, is a tool for fast functional annotation of novel sequences. It uses precomputed orthologous groups and phylogenies from the eggNOG database (http://eggnog5.embl.de) to transfer functional information from fine-grained orthologs only.

Argument Description
--emapper-annotations EMAPPER_ANNOTATIONS Attach eggNOG-mapper output out.emapper.annotations
--emapper-pfam EMAPPER_PFAM Attach eggNOG-mapper pfam output out.emapper.pfams
--emapper-smart EMAPPER_SMART Attach eggNOG-mapper smart output out.emapper.smart
--alignment ALIGNMENT Sequence alignment, .fasta format

It generates three kind of ouput file,

  1. Raw standard output, *.out.emapper.annotations, that contains functional annotations and prthology predictions, for example:
## Mon Feb 27 09:05:50 2023
## emapper-2.1.9
## /data/shared/home/emapper/miniconda3/envs/eggnog-mapper-2.1/bin/emapper.py --cpu 20 --mp_start_method forkserver --data_dir /dev/shm/ -o out --output_dir /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j --temp_dir /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j --override -m diamond --dmnd_ignore_warnings --dmnd_algo ctg -i /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j/queries.fasta --evalue 0.001 --score 60 --pident 40 --query_cover 20 --subject_cover 20 --itype proteins --tax_scope auto --target_orthologs all --go_evidence non-electronic --pfam_realign denovo --num_servers 2 --report_orthologs --decorate_gff yes --excel
##
#query	seed_ortholog	evalue	score	eggNOG_OGs	max_annot_lvl	COG_category	Description	Preferred_name	GOs	EC	KEGG_ko	KEGG_Pathway	KEGG_Module	KEGG_Reaction	KEGG_rclass	BRITE	KEGG_TC	CAZy	BiGG_Reaction	PFAMs
....
## 272 queries scanned
## Total time (seconds): 45.73449420928955
## Rate: 5.95 q/s
  1. Pfam domain annotations, *.out.emapper.pfam, for example:
## Mon Feb 27 09:05:52 2023
## emapper-2.1.9
## /data/shared/home/emapper/miniconda3/envs/eggnog-mapper-2.1/bin/emapper.py --cpu 20 --mp_start_method forkserver --data_dir /dev/shm/ -o out --output_dir /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j --temp_dir /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j --override -m diamond --dmnd_ignore_warnings --dmnd_algo ctg -i /emapper_web_jobs/emapper_jobs/user_data/MM_knn6rw6j/queries.fasta --evalue 0.001 --score 60 --pident 40 --query_cover 20 --subject_cover 20 --itype proteins --tax_scope auto --target_orthologs all --go_evidence non-electronic --pfam_realign denovo --num_servers 2 --report_orthologs --decorate_gff yes --excel
##
# query_name	hit	evalue	sum_score	query_length	hmmfrom	hmmto	seqfrom	seqto	query_coverage
...
## 272 queries scanned
## Total time (seconds): 28.74908423423767
## Rate: 9.46 q/s
  1. SMART domain annotation, *.out.emapper.smart.out, for example:
10020.ENSDORP00000023664	MAGE_N	10	63	220000.115599899
10020.ENSDORP00000023664	PTN	44	128	683.160049964146
10020.ENSDORP00000023664	Ephrin_rec_like	73	117	248282.169266432
10020.ENSDORP00000023664	PreSET	87	186	494.036044144428
....

TreeProfiler allows users annotate EggNOG-mapper standard output to target tree with following arguments

  • --emapper-annotations, attach eggNOG-mapper output out.emapper.annotations.
  • --emapper-pfam, attach eggNOG-mapper pfam output out.emapper.pfams.
  • --emapper-smart, attach eggNOG-mapper smart output out.emapper.smart.

emapper annotation output and the summary method Field datatype summary method seed_ortholog str counter evalue float descriptive stat score float descriptive stat eggNOG_OGs list counter max_annot_lvl str counter COG_category str counter Description str counter Preferred_name str counter GOs list counter EC str counter KEGG_ko list counter KEGG_Pathway list counter KEGG_Module list counter KEGG_Reaction list counter KEGG_rclass list counter BRITE list counter KEGG_TC list counter CAZy list counter BiGG_Reaction list counter PFAMs list counter

check EggNOG-mapper annotation example

Analytical Methods in TreeProfiler

we use examples in examples/analytic_example

Ancestral Character Reconstruction

Argument Description
--acr-discrete-columns ACR_DISCRETE_COLUMNS [ACR_DISCRETE_COLUMNS ...] names of columns to perform acr analysis for discrete traits
--prediction-method {MPPA,MAP,JOINT,DOWNPASS,ACCTRAN,DELTRAN,COPY,ALL,ML,MP} Prediction method for ACR discrete analysis. Options: MPPA, MAP, JOINT, DOWNPASS, ACCTRAN, DELTRAN, COPY, ALL, ML, MP. [Default: MPPA]
--model {JC, F81, EFT, HKY, JTT} Evolutionary model for ML methods in ACR discrete analysis. Options: JC, F81, EFT, HKY, JTT. [Default: F81]
--threads THREADS Number of threads to use for annotation. [Default: 4] `

example

ls 
Albanian.tree.152tax.nwk metadata_tab.csv

# check metadata
head metadata_tab.csv
id	Country
98CMAJ6932	Africa
98CMAJ6933	Africa
96CMAJ6134	Africa
00SEAY5240	WestEurope
97CDAF6240	Africa
97CDAF6238	Africa

# quick running using all default setting
treeprofiler annotate \
-t Albanian.tree.152tax_annotated.nw \
--internal-parser name \
--acr-discrete-columns Country  \
-o ./

# check properties
python show_tree_props.py Albanian.tree.152tax_annotated.nw
Target tree internal node Root contains the following properties:  
{
'name': 'ROOT', 
'dist': 0.0, 
'Country': 'Africa', 
'Country_counter': 'Africa--50||Albania--31||EastEurope--10||Greece--39||WestEurope--22'
}
Target tree leaf node 97CDAF6238 contains the following propertiies:  
{
'name': '97CDAF6238', 
'dist': 0.08034, 
'Country': 'Africa'
}

# check output files
head marginal_probabilities.character_Country.model_F81.tab
node	Africa	Albania	EastEurope	Greece	WestEurope
ROOT	0.9462054466377042	0.0019142742715016286	0.011256165797407233	0.013434856612985015	0.027189256680401872
node_1	0.9497450729621073	0.00018867741670758483	0.00048818236055906636	0.001324183303131325	0.04825388395749479
node_2	0.9752818930521312	0.00048506476303705997	0.015213913144468159	0.0034043477773810613	0.0056147812629824085
node_3	0.9473989345272481	0.0002801019197914036	0.0005949760547048478	0.001965821926394849	0.04976016557186095
node_4	0.9384942099527859	0.0002164578877048098	0.00043984526187224396	0.00151915289715353	0.05933033400048369
00CZAY4286	0.0	0.0	1.0	0.0	0.0
node_5	0.9999517018762923	9.117741186968884e-07	3.0195194146220156e-05	6.458698485629717e-06	1.0732456957024559e-05
97CDAF6238	1.0	0.0	0.0	0.0	0.0
94CYAF6237	0.0	0.0	0.0	0.0	1.0

# check output files
head params.character_Country.method_MPPA.model_F81.tab
parameter	value
pastml_version	1.9.42
character	Country
log_likelihood	-118.96060539505257
log_likelihood_restricted_JOINT	-123.17363108674806
log_likelihood_restricted_MAP	-123.3244296265415
log_likelihood_restricted_MPPA	-120.52779174042388
num_scenarios	96
num_states_per_node_avg	1.023102310231023
num_unresolved_nodes	6

--acr-discrete-columns <PROP> allow users to calculate the ancestral character state construction via pastml package. Hence the internal node will be infered the state based on the children leaf node metadata. Users can choose the prediction method using --prediction-method <METHOD>. It will generate the output config file from PASTML package as

params.character_{prop}.method_{method}.model_{model}.tab which contains information of likelihood from different model/method.

MAXIMUM LIKELIHOOD (ML) METHODS

ML approaches are based on probabilistic models of character evolution along tree branches. From a theoretical standpoint, ML methods have some optimality guaranty [Zhang and Nei, 1997, Gascuel and Steel, 2014], at least in the absence of model violation. Noted that running this ML method will generate output file as marginal_probabilities.character_{prop}.model_{model}.tab which contain the calculated propabilities of each character in every internal nodes. Instead MP method won’t generate it because it doesn’t compute the marginal propabilities

We provide three ML methods: maximum a posteriori (MAP), Joint, and marginal posterior probabilities approximation (MPPA, recommended):

  • MAP (maximum a posteriori) computes the marginal posterior probabilities of every state for each of the tree nodes, based on the information from the whole tree, i.e. tip states and branch lengths (obtained via two tree traversals: bottom-up, and then top-down). MAP then chooses a state with the highest posterior probability for each node, independently from one node to another. This could induce globally inconsistent scenarios (typically: two very close nodes with incompatible predictions).

  • JOINT While MAP chooses predicted states based on all possible scenarios, Joint method [Pupko et al., 2000] reconstructs the states of the scenario with the highest likelihood.

  • MPPA(default), MAP and Joint methods choose one state per node and do not reflect the fact that with real data and large trees, billions of scenarios may have similar posterior probabilities. Based on the marginal posterior probabilities, MPPA (marginal posterior probabilities approximation) chooses for every node a subset of likely states that minimizes the prediction error measured by the Brier score. It therefore sometimes keeps multiple state predictions per node but only when they have similar and high probabilities. Note however that the states not kept by MPPA might still be significant despite being less probable -- to check marginal probabilities of each state on a node consult the output marginal probabilities file (can be downloaded via the button below each compressed visualisation).

  • ML all the ML methods for ML

Character evolution models (only in ML methods)

We provide some models of character evolution that differ in the way the equilibrium frequencies of states are calculated: JC, F81 (recommended), and EFT (estimate-from-tips, not recommended). Using --prediction-method <model> to set up.

  • JC With JC model [Jukes and Cantor, 1969] all frequencies, and therefore rates of changes from state i to state j (i ≠ j) are equal.

  • F81 (recommended) With F81 model [Felsenstein, 1981], the rate of changes from i to j (i ≠ j) is proportional to the equilibrium frequency of j. The equilibrium frequencies are optimised.

  • EFT With EFT (estimate-from-tips) model, the equilibrium frequencies are calculated based on the tip state proportions, the rate of changes from i to j (i ≠ j) is proportional to the equilibrium frequency of j.

MAXIMUM PARSIMONY (MP) METHODS

MP methods aim to minimize the number of state changes in the tree. They are very quick but not very accurate, e.g. they do not take into account branch lengths. We provide three MP methods: DOWNPASS, ACCTRAN, and DELTRAN.

  • DOWNPASS DOWNPASS [Maddison and Maddison, 2003] performs two tree traversals: bottom-up and top-down, at the end of which it calculates the most parsimonious states of ancestral nodes based on the information from the whole tree. However some of the nodes might be not completely resolved due to multiple parsimonious solutions.

  • DELTRAN DELTRAN (delayed transformation) [Swofford and Maddison, 1987] reduces the number of node state ambiguities by making the changes as close to the tips as possible, hence prioritizing parallel mutations.

  • ACCTRAN ACCTRAN (accelerated transformation) [Farris, 1970] reduces the number of node state ambiguities by forcing the state changes to be performed as close to the root as possible, and therefore prioritises the reverse mutations.

  • MP all the MP methods for MP

examples:

# using different model
treeprofiler annotate \
-t Albanian.tree.152tax.nwk \
--internal-parser name \
--metadata metadata_tab.csv \
--acr-discrete-columns Country \
--prediction-method MPPA \
--model JC \
--threads 6 \
-o ./

python show_tree_props.py Albanian.tree.152tax_annotated.nw
Target tree internal node Root contains the following properties:  
{
'name': 'ROOT',
'dist': 0.0, 
'Country': 'Africa', 
'Country_counter': 'Africa--50||Albania--31||EastEurope--10||Greece--39||WestEurope--22'
}
Target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': '97CDAF6238', 
'dist': 0.08034, 
'Country': 'Africa'
}

# using MP methods (no calculation of ancestral propababilities)
treeprofiler annotate \
-t Albanian.tree.152tax.nwk \
--internal-parser name \
--metadata metadata_tab.csv \
--acr-discrete-columns Country \
--prediction-method DOWNPASS \
--threads 6 \
-o ./


python show_tree_props.py Albanian.tree.152tax_annotated.nw
Target tree internal node Root contains the following properties:  
{
'name': 'ROOT',
'dist': 0.0, 
'Country': 'Africa', 
'Country_counter': 'Africa--50||Albania--31||EastEurope--10||Greece--39||WestEurope--22'
}
Target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': '97CDAF6238', 
'dist': 0.08034, 
'Country': 'Africa'
}

Phylogenetic Signal Delta Statistic

Running signal delta statistic required running Ancestral Character Reconstruction using MPPA or MP methods in order to have the ancestral character propabilities. Calculated delta statistic metric and p_value of given trait will be stored in root node as properties.

Argument Description
--delta-stats Calculate delta statistic for discrete traits in ACR analysis, ONLY for MPPA or MAP prediction method. [Default: False]
--ent-type {LSE,SE,GINI} Entropy method to measure the degree of phylogenetic signal between discrete trait and phylogeny. Options: LSE, SE, GINI. [Default: SE] for Shannon Entropy, other options are GINI for Gini impurity and LSE for Linear Shannon Entropy.
--iteration ITERATION Number of iterations for delta statistic calculation. [Default: 10000]
--lambda0 LAMBDA0 Rate parameter of the delta statistic calculation. [Default: 0.1]
--se SE Standard deviation of the delta statistic calculation. [Default: 0.5]
--thin THIN Keep only each xth iterate. [Default: 10]
--burn BURN Burned-in iterates. [Default: 100]

Delta statistic Examples

treeprofiler annotate \
-t Albanian.tree.152tax.nwk \
--internal-parser name \
--metadata metadata_tab.csv \
# acr to obtain propabilities
--acr-discrete-columns Country \
--prediction-method MPPA \
--model F81 \
# delta statistic
--delta-stats \
--ent-type SE \
--iteration 10000 \
--lambda0 0.1 \
--se 0.5 \
--thin 10 \
--burn 100 \
-o ./

# delta metric and p_val stored in root node
python show_tree_props.py Albanian.tree.152tax_annotated.nw
Target tree internal node Root contains the following properties:  
{
'name': 'ROOT', 
'dist': 0.0, 
'Country': 'Africa', 
'Country_counter': 'Africa--50||Albania--31||EastEurope--10||Greece--39||WestEurope--22', 
'Country_delta': '19.52340888828994', 
'Country_pval': '0.0'
}
Target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': '97CDAF6238', 
'dist': 0.08034, 
'Country': 'Africa'
}

Lineage Specificity Analysis

Using --ls-columns <prop_name> to start the lineage specificity analysis, the given trait need to be boolean value such as True; False; yes; no; t; f; 1; 0; which fit the criteria in treeprofiler annotate. Calculated results will be stored in each internal nodes with suffix of _prec , _sens and _f1.

Argument Description
--ls-columns LS_COLUMNS [LS_COLUMNS ...] names of properties to perform lineage specificity analysis.
--prec-cutoff PREC_CUTOFF Precision cutoff for lineage specificity analysis. [Default: 0.95]
--sens-cutoff SENS_CUTOFF Sensitivity threshold for lineage specificity analysis. [Default: 0.95]

Examples:

# in the example we loose the cutoff to 0.5
treeprofiler annotate \
-t demo2.tree \
-d demo2_ls.tsv \
--ls-columns profile1 \
--prec-cutoff 0.5 \
--sens-cutoff 0.5 \
-o ./

# check properties 
python show_tree_props.py demo2_annotated.nw
Target tree internal node Root contains the following properties:  
{
'name': 'Root', 
'profile1_counter': 'False--33||True--7', 
'profile1_f1': '0.2978723404255319', 
'profile1_prec': '0.175', 
'profile1_sens': '1.0'
}
Target tree leaf node Taxa_0 contains the following propertiies:  
{
'name': 'Taxa_3', 
'dist': 0.315846, 
'profile1': 'False'
}

Output Formats for Annotated Trees

TreeProfiler annotate subcommand will generate the following output file

  1. <input_tree> + _annotated.nw, newick format with annotated tree
  2. <input_tree> + _annotated.ete, ete format with annotated tree
  3. <input_tree> + _annotated_prop2type.txt, config file where store the datatype of each annotated properties
  4. <input_tree> + _annotated.tsv, metadata in tab-separated values format with annotated and summarized internal nodes information.

In the following plot step, users can use either .nw or .ete by putting --input-type [newick, ete] flag to identify. The difference between .nw and .ete format is

  • newick file is more universal and be able to used in different other phylogenetic software although associated data of tree nodes will be considered as plain text, so if you use newick format, alongside with the prop2type config file which was generated before by adding --prop2type <prop2type_file>

  • ete format is a novel format developed to solve the situation we encounter in the previous step, annotated tree can be recover easily with all the annotated data without changing the data type. Besides, the ete format optimized the tree file size after mapped with its associated data. Hence it's very handy for programers in their own script. At this moment we can only view the ete format in treeprofiler, but we will make the ete format more universal to other phylogenetic software. Hence using ete format in plot subcommand is highly reccomended

plot, Plot annotated tree with layouts

TreeProfiler provides a several of layout options for visualize features in metadata along with tree, depends on their datatype

Interactive visualization interface

TreeProfiler uses the new visualization framework implemented in ETE 4.0, which allows for the interactive exploration of huge phylogenies based on a context-based adaptive zooming strategy.

treeprofiler interface

Overview of the TreeProfiler visualization interface. (A) The control panel allows users to customize visualization layout and features, and to perform text-based searches. (B) An annotated example tree, from examples/basic_example1/ after annotate, is launched with a command plot. Support values (red) and branch distance (grey) are displayed on top of branches. The properties of one of the nodes are shown on the top. The minimap (bottom right) facilitates navigation. (C) The node editor panel provides access to node-specific actions, such as creating subtrees, collapsing, pruning, rooting and more. (D) Visualized properties by order are, categorical data random_type in rectangle-layout, numerical data sample1, sample2, sample3 in heatmap-layout and sample4, sample5 in barplot-layout, categorical data random-type in profiling-layout shown as presence-absence matrix. Layouts are shown with the order as input argument order from the command line. Names of properties are shown as titles on the top of each layout. (E) Legends each layout is shown on the top right corner with the same order as the layouts.

Basic options of visualizing layouts

Selected properties of tree will be visualized at the aligned panel alongside with the tree, here is some basic parameters for layouts.

  • --column-width column width of each property in layout. [default: 20].
  • --barplot-width width of total scale of barplot layout.[default: 200]
  • --padding-x customize horizontal column padding distance of each layout.[default: 1]
  • --padding-y customize vertical padding distance of each layout.[default: 0]

Layouts for categorical data

Users can add the following flag to activate layouts for categorical data

--colorbranch-layout COLORBRANCH_LAYOUT
                        <prop1,prop2> names of properties where branches will be colored based on
                        different values.
--label-layout LABEL_LAYOUT
                      <prop1,prop2> names of properties where values will be displayed on the
                      aligned panel.
--rectangle-layout rectangle_layout
                      <prop1,prop2> names of properties where values will be label as rectangular
                      color block on the aligned panel.
--profiling-layout PROFILING_LAYOUT
                        <prop1,prop2> names of properties which need to be convert to presence-
                        absence profiling matrix of each value.
--categorical-matrix-layout CATEGORICAL_MATRIX_LAYOUT
                        <col1,col2> names, column index which need to be plot as categorical_matrix_layout for categorical columns.

example


## target column "random_type" in examples/basic_example1/basic_example1_metadata1.tsv
# List random_type feature as text in aligned panel using label_layout
treeprofiler plot --tree examples/basic_example1/basic_example1_annotated.ete --label-layout random_type 

# Label random_type feature on branch with different colors in aligned panel  using --colorbranch-layout
treeprofiler plot --tree examples/basic_example1/basic_example1_annotated.ete  --colorbranch-layout random_type 

# Label random_type feature with retangular block in aligned panel using --rectangle-layout
treeprofiler plot --tree examples/basic_example1/basic_example1_annotated.ete  --rectangle-layout random_type 

# Convert random_type feature into presence-absence profiling matrix using --profiling-layout
treeprofiler plot --tree examples/basic_example1/basic_example1_annotated.ete --profiling-layout random_type

# Label all feature with retangular block in aligned panel using --categorical-matrix-layout
treeprofiler plot --tree examples/basic_example2/MCC_FluA_H3_annotated.ete --categorical-matrix-layout PB2 PB1 PA HA NP NA M NS

label_layout example label-layout displays the corresponding value of selected property of each leaf and categorized with colors.

colorbranch_layout example colorbranch-layout categorize values of selected property by coloring the leaf nodes.

rectangle_layout example rectangle-layout categorizes values of selected property by displaying rectangular color block alongside the corresponing leaf node.

profiling_layout example profiling-layout convert categorical data of the selected property to presence-absence matrix.

categorical_matrix_layout example categorical-matrix-layout convert multiple categorical properties into categorical matrix, each value will be represent in different color. In this example we use MCC_FluA_H3.tree, time-scaled phylogenetic tree of H3 influenza viruses inferred by BEAST using molecular clock model and MCC_FluA_H3_Genotype.txt, Genotype table of the H3 influenza viruses(Yu, Guangchuang et al. (2017)). 8 gene segments PB2,PB1,PA,HA,NP,NA,M,NS as properties, and virus strain trig, pdm and HuH3N2 are categorized with different colors in the matrix.

Layouts for boolean data

Users can add the following flag to activate layouts for Boolean data

---binary-layout BINARYLAYOUT
                        <col1,col2> names, column index or index range of columns which need to be plot as binary_layout, label shown only positive value
--revbinary-layout REVBINARYLAYOUT
                        <col1,col2> names, column index or index range of columns which need to be plot as revbinary_layout, label shown only negative value
## target column "bool_type", "bool_type2" in examples/basic_example1/basic_example1_metadata1.tsv
# List postive bool_type feature in aligned panel using binary_layout
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
---binary-layout bool_type

# List negative bool_type feature in aligned panel using binary_layout
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--revbinary-layout bool_type2

binary example binary_layout displays postive value as colored block and negative value as grey block

revbinary example binary_layout displays negative value as colored block and postive value as grey block

*Boolean data can be also visualized by categorical layouts, such as

# multiple columns seperated by ','
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--rectangle-layout bool_type

Layouts for Numerical data

Users can add the following flag to activate layouts for Numerical data

--heatmap-layout HEATMAP_LAYOUT
                        <prop1,prop2> names of numerical properties which need to be read as heatmap_layout.
--barplot-layout BARPLOT_LAYOUT
                        <prop1,prop2> names of numericalproperties which need to be read as barplot_layouts.
--numerical-matrix-layout NUMERICAL_MATRIX_LAYOUT
                        <prop1,prop2> names which need to be plot as numerical_matrix_layout for numerical values.
## target column 'sample[1-5]' feature in examples/basic_example1/basic_example1_metadata1.tsv
# visualize sample1 feature in Barplot
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--barplot-layout sample1,sample2,sample3,sample4,sample5

# visualize sample1-sample5 in Heatmap
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--heatmap-layout sample1,sample2,sample3,sample4,sample5

# visualize col1-col7 in diauxic_annotated.nw with numerical profiling

treeprofiler plot \
--tree examples/basic_example2/diauxic_annotated.ete \
--numerical-matrix-layout col1,col2,col3,col4,col5,col6,col7

barplot example barplot-layout display numerical data to barplot with scale, users can change the length of scale by using argument --barplot-width [default: 200] heatmap example heatmap-layout display numerical data to heatmap, which will automatically scale the minimum and maximum value from white to red.

numerical profiling example

numerical-profiling-layout display multiple numerical data column to numerical data trix, which will automatically scale the minimum and maximum value from blue to red. Comparing to heatmap-layout, numerical-profiling-layout can afford more data columns with faster memory.

Layouts for list data

here we use example in examples/basic_example1/basic_example1_metadata2.tsv

# column `list_data` contain multiple elements value which can be process as list data in treeprofiler
head examples/basic_example1/basic_example1_metadata2.tsv
#name	abs_data	list_data
Phy003I7ZJ_CHICK	97	w,t,t
Phy0054BO3_MELGA	16	r,q,s
Phy00508FR_NIPNI	87	z,f,p
Phy004O1E0_APTFO	6	z,t,b
Phy004PA1B_ANAPL	72	z,r,p

## annotate tree first
treeprofiler annotate \
--tree examples/basic_example1/basic_example1.nw \
--input-type newick \
--metadata examples/basic_example1/basic_example1_metadata2.tsv \
-o examples/basic_example1/

Column list_data contain multiple elements value which can be process as list data in treeprofiler. Users can visualize list information using --multi-profiling-layout, which will . In this case, we highly reccomend users using ete using --input-type in order to resume datatype list in annotated tree.

# visualize using multi_profiling_layout
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--multi-profiling-layout list_data

Layouts for multiple sequence alignment

In order to visualize multiple sequence alignment alongside with the tree, first we need to annotate alignment using --alignment in annotate. Then activate alignment layout by adding --alignment-layout

# annotate
treeprofiler annotate \
--tree examples/basic_example2/MCC_FluA_H3.nw \
--input-type newick \
--alignment  ./examples/basic_example2/FluA_H3_AA.fas \
--outdir examples/basic_example2/

# visualize
treeprofiler plot \
--tree examples/basic_example2/MCC_FluA_H3_annotated.ete \
--alignment-layout

alignment example alignment-layout displays multiple sequence alignments with a tree. Whole MSA sequences were visualized with a tree in rectangular layout. Sacle of sequence with position roadmark located at the top.

Layouts for eggnog-mapper pfam annotations

if metadata is pfam annotations from eggnog-mapper, using --emapper-pfam to annotate domain information in target tree and MUST be with the alignment using --alignment to attach corresponding file.

Once tree is annotated, using --domain-layout to visualize it.

treeprofiler annotate \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736.nw \
--input-type newick \
--emapper-pfam examples/pratical_example/emapper/7955.out.emapper.pfam \
--alignment examples/pratical_example/emapper/7955.ENSDARP00000116736.aln.faa \
-o examples/pratical_example/emapper/

treeprofiler plot \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736_annotated.ete \
--domain-layout

pfam example domain-layout displays domain annotation with a tree. It requires sequence infomration --alignment in annotate step from MSA sequences to locate domain start and end position.

Layouts for eggnog-mapper smart annotations

if metadata is smart annotations from eggnog-mapper, using --emapper-smart to annotate domain information in target tree and must be with the alignment using --alignment to attach corresponding file.

Once tree is annotated, using --domain-layout to visualize it.

treeprofiler annotate \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736.nw \
--input-type newick \
--emapper-smart examples/pratical_example/emapper/7955.out.emapper.smart.out \
--alignment examples/pratical_example/emapper/7955.ENSDARP00000116736.aln.faa \
-o examples/pratical_example/emapper/

treeprofiler plot \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736_annotated.ete \
--domain-layout

Layouts for eggnog-mapper annotations

If metadata is output from eggnog-mapper, using --emapper-annotations automatically parse all information as metadata. Program will parse data of all the columns from emapper output. Once tree is annotated, using --emapper-layout to visualize tree with all the metadata

seed_ortholog	evalue	score	eggNOG_OGs	max_annot_lvl	COG_category	Description	Preferred_name	GOs	EC	KEGG_ko	KEGG_Pathway	KEGG_Module	KEGG_Reaction	KEGG_rclass	BRITE	KEGG_TC	CAZy	BiGG_Reaction	PFAMs
treeprofiler annotate \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736.nw \
--input-type newick \
--emapper-annotations examples/pratical_example/emapper/7955.out.emapper.annotations \
-o examples/pratical_example/emapper/

treeprofiler plot \
--tree examples/pratical_example/emapper/7955.ENSDARP00000116736_annotated.ete \
--input-type ete \
--emapper-layout

Check eggnogmapper example

Visualizing annotated internal nodes

If internal nodes are annotated, TreeProfiler is also able to visualize annotated features automatically when layouts are activated

Internal nodes of categorical and boolean data

As internal nodes of categorical and boolean data are annotated as counter, for categorical data it generates a stacked bar of counter summary at the top of each internal node. And for boolean data, it generates a heatmap where represent positive(or negative) percentage of total data of each internal node.

Categorical data

Before collapsed text_uncollapsed After collapsed text_collapsed In this example, collapsed internal node shows a stacked bar which summarize categorical counter data of children nodes. 1/6 is red, 2/6 is blue and 3/6 is green.

Boolean data

Before collapsed bool_uncollapsed After collapsed bool_collapsed In this example, collapsed internal node shows a heatmap which represent the gradient level of positive/total ratio.

Internal nodes of numerical data

Internal nodes of numerical data are process descriptive statistic analysis by default, hence when users collapse any branch, barplot_layout or heatmap_layout will demonstrate representative value, avg by default. representative value can be changed by using --internal-plot-measure

Numerical data

# select max instead of avg as internal node ploting representative
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--heatmap-layout sample1,sample2,sample3,sample4,sample5 \
--internal-plot-measure max 

Before collapsed heatmap_uncollapsed

After collapsed avg as itnernal plot measure heatmap_collapsed max as itnernal plot measure heatmap_max_collapsed

Layouts for Taxonomic data

If target tree was annotated with --taxon-column in previous annotate step successfully, now activate Taxonomic layout using --taxonclade-layout or --taxonrectangle-layout to visualize taxonomic classification. All rank levels will be generated separately and users can switch each of them on/off.

## Annotate
# GTDB
treeprofiler annotate \
--tree examples/taxonomy_example/gtdb/gtdb_example1.nw \
--metadata examples/taxonomy_example/gtdb/gtdb_example1.tsv \
--taxon-column name \
--taxon-column name \
--taxadb GTDB \
--outdir ./examples/taxonomy_example/gtdb/

# NCBI
treeprofiler annotate \
--tree examples/taxonomy_example/ncbi/spongilla_example.nw \
--metadata examples/taxonomy_example/ncbi/spongilla_example.tsv \
--taxon-column name \
--taxon-delimiter .  \
--taxa-field 0 \
--taxadb NCBI \
--outdir ./examples/taxonomy_example/ncbi/


## Visualize 
treeprofiler plot \
--tree ./examples/taxonomy_example/gtdb/gtdb_example1_annotated.nw \ --taxonrectangle-layout

treeprofiler plot \
--tree examples/taxonomy_example/ncbi/spongilla_example_annotated.nw \ --taxonclade-layout

taxarect_collapsed taxonrectangle-layout shows taxonomic classification as rectangular block from root to leaf.

taxaclade_collapsed taxonclade-layout color associated clade of each category of each rank.

Conditional query in annotated tree

TreeProfiler allows users to perform conditional process based on different circumstances

  • Conditional pruning, conditional pruning works both annotate and plot subcommand

    • --pruned-by, prune the annotated tree by conditions, and remove the branches or clades which don't fit the condition.
    • --rank-limit, prune the taxonomic annotated tree based on rank of classification.
  • Conditional collapsing, conditional collapsing works in plot subcommand, allow users to collapsed tree internal nodes to clade under customized conditions

    • --collapsed-by, collapse tree branches whose nodes if the conditions, mainly on internal nodes
  • Conditional highlight, conditional highlight works in plot subcommand, allow users to highlight tree nodes under customized conditions

    • --highlighted-by, select tree nodes which fit the conditions

Query Syntax

Basic Query

All the conditional query shared the same syntax, a standard query consists the following

--pruned-by|collapsed-by|highlighted-by "<left_value> <operator> <right_value>"
  • left value, the property of leaf node or internal node
  • operators
    • =
    • !=
    • >
    • >=
    • <
    • <=
    • contains
  • right value, custom value for the condition

Example

## annotate tree 
treeprofiler annotate \
--tree examples/basic_example1/basic_example1.nw \
--input-type newick \
--metadata examples/basic_example1/basic_example1_metadata1.tsv \
--bool-prop bool_type bool_type2 \
--counter-stat relative \
-o examples/basic_example1/ 

# Conditional pruning, prune leaf node whose name contain "FALPE"
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.nw \
--input-type newick \
--pruned-by "name contains FALPE"

Left panel is tree before prune, right panel is result after prune pruned

# Conditional highlight
# select tree node whose name contains `FALPE` character
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.nw \
--input-type newick \
--highlighted-by "name contains FALPE"

highlighted

# select tree node whose sample1 feature > 0.50, here we using ete format which can resume the datatype 
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--highlighted-by "sample1 > 0.50" \
--heatmap-layout sample1

# if use tree in newick format, we need to attach the prop2type file which can resume the datatype
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.nw \
--input-type newick \
--prop2type examples/basic_example1/basic_example1_prop2type.txt \
--highlighted-by "sample1 > 0.50" \
--heatmap-layout sample1

highlighted_numeric

Query in internal nodes

Query in internal nodes' properties is also available, in this case, left_value of query will be the internal node property, remember to add the proper suffixes such as _avg, _max,etc, for the numerical data or _counter for categorical and boolean data.

Example

# select tree internal node where sample1_avg feature < 0.50
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--heatmap-layout sample1 \
--collapsed-by "sample1_avg < 0.50" 

collapsed_numeric Syntax for internal node counter data

# collapse tree internal nodes, where `high` relative counter > 0.35 in random_type_counter property
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--rectangle-layout random_type \
--collapsed-by "random_type_counter:high > 0.35" \
--column-width 70

collapsed_counter

AND and OR conditions

The syntax for the AND condition and OR condition in TreeProfiler is:

AND condition will be under one argument, syntax seperated by ,, such as

# select tree  node where sample1 feature > 0.50 AND sample2 < 0.2
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--heatmap-layout sample1 sample2 sample3 sample4 sample5 \
--highlighted-by "sample1>0.50,sample2<0.2" 

highlighted_and OR condition will be used more than one arguments

# select tree node where sample1 feature > 0.50 OR sample2 < 0.2
treeprofiler plot \
--tree examples/basic_example1/basic_example1_annotated.ete \
--input-type ete \
--heatmap-layout sample1 sample2 sample3 sample4 sample5 \
--highlighted-by "sample1>0.50" \
--highlighted-by "sample2<0.2" 

highlighted_or

conditional limit based on taxonomic level

Prune taxonomic annotated tree based on following taxonomic rank level, kingdom, phylum, class, order, family, genus, species, subspecies

# Case in GTDB
# before pruning
treeprofiler plot \
--tree examples/taxonomy_example/gtdb/gtdb_example1_annotated.ete \
--input-type ete \
--taxonclade-layout 

before rank limit gtdb_before_rank

# prune tree in visualization, rank limit to family level
treeprofiler plot \
--tree examples/taxonomy_example/gtdb/gtdb_example1_annotated.ete \
--input-type ete \
--rank-limit class \
--taxonclade-layout  

After rank_limit gtdb_class As you see, class branches of target gtdb tree are all pruned and only left the internal branches which rank as class.

Demo1 Explore GTDB taxonomic tree with metadata and habitat information of progenome3

To illustrate the easiness and flexibility of TreeProfiler, we use it to annotate and visualize the version 202 of the GTDB prokaryotic phylogeny, which represents a species tree with 60,000 representative bacterial and archaeal species in here. GTDB provides the tree in plain newick format and massive datatable with various associated to such species. Apart from the metadata provided by the GTDB, here we also include annotations of genomes and species clusters to habitats from proGenomes3(Fullam et al. 2023).

Example can be found in directory ./examples/pratical/gtdb_r202/. We already prepared the gtdb v202 taxonomic tree gtdbv202.nw by merging Bacteria and Archaea trees, detailed steps are included in merge_gtdbtree.py. Based on the difference of computational capacity, complete steps and pipeline can be found in gtdbv202full_demo.sh and gtdbv202lite_demo.sh.

  1. A glance of habitat information of progenome3
cd examples/pratical/gtdb_r202/

zcat progenome3.tar.gz|head -n 4
progenome3.tsv0000664000175000017500000343216414447266674012351 0ustar  dengdenggtdb_genome_representative	aquatic_habitat	host_associated	soil_habitat
RS_GCF_004210275.1	f	t	f
GB_GCA_014116815.1			
RS_GCF_000730245.1	f	t	f

  1. Download metadata of archaea and bacteria from gtdb
wget https://data.gtdb.ecogenomic.org/releases/release202/202.0/ar122_metadata_r202.tar.gz
wget https://data.gtdb.ecogenomic.org/releases/release202/202.0/bac120_metadata_r202.tar.gz
  1. GTDB metadata annotation

Considering the size of GTDB metadata and phylogeney, here we provide two pipelines for user to choose base on their computational resources.

  • GTDB partial annotation (lightweight), which we will extract only a few of columns from metadata for annotation
# Extract genome_size, protein_count, gc_percentage, ncbi_assembly_level, ncbi_genome_category columns from GTDB metadata
tar -xf ar122_metadata_r202.tar.gz -O | cut -f1,14,89,13,46,56 > ar122_metadata_r202_lite.tsv
tar -xf bac120_metadata_r202.tar.gz -O | cut -f1,14,89,13,46,56 > bac120_metadata_r202_lite.tsv

# start annotation
treeprofiler annotate \
--tree gtdbv202.nw \
--input-type newick \
--metadata \
ar122_metadata_r202_lite.tsv bac120_metadata_r202_lite.tsv progenome3.tar.gz \
--taxon-column name \
--taxadb GTDB \
-o ./
  • GTDB full annotation, which requires >6G disk space and >15G RAM memory.
# Annotate metadatas to taxonomic tree(this step may take a few minutes)
treeprofiler annotate \
--tree gtdbv202.nw \
--input-type newick \
--metadata \
ar122_metadata_r202.tar.gz bac120_metadata_r202.tar.gz progenome3.tar.gz \
--taxon-column name \
--taxadb GTDB \
-o ./

  1. Visualizing annotated GTDB tree with GTDB metadata, which are
  • genome_size

  • protein_count

  • gc_percentage

  • ncbi_assembly_level

  • ncbi_genome_category

    and progenome3 habitat information

  • aquatic_habitat

  • host_associated

  • soil_habitat

treeprofiler plot \
--tree gtdbv202_annotated.ete \
--input-type ete \
--barplot-layout genome_size protein_count \
--heatmap-layout gc_percentage \
---binary-layout aquatic_habitat host_associated soil_habitat \
--rectangle-layout ncbi_assembly_level ncbi_genome_category \
--taxonclade-layout \
--column-width 70

gtdbv202_general Here we show the GTDB v202 taxonomy tree (bacteria+archaea, 47894 leaves) in rectangular tree layout, with selected annotated properties which are displayed by order in aligned panel. Numerical data genome_size and protein_count are visualized as barplot, gc_percentage is shown as heatmap. Habitat information of progenome3, aquatic_habitat, host_associated and soil_habitat are shown as binary layout. Two categorical data ncbi_assembly_level and ncbi_genome_category are visualized as rectangular layout. In order to improve memory effiency, tree has default collapse level (10) hence multiple leaf nodes are collapsed as default, if nodes are collapsed, aligned layouts represented corresponding values of each property of annotated internal nodes. In this level, taxonclade-layout of the highest classification kingdom is activated, which demonstrate bacteria in salmon, archaea in blue.

gtdbv202_closeup Once zoom into smaller view in tree, collapse level reduces automatically (or manually) to 1, then leaf nodes are dynamically displayed and rendered. Therefore associated layouts are shown as represending values of annotated leaves. taxonclade-layout colored leaf nodes in specie rank level.

progenome3 example Annotated tree and layouts can be shown as circular tree layout.

Demo2 Explore large NifH gene tree with functional and taxonomic information

Here we analyzed the nitrogenase iron protein NifH gene family across bacteria from EggNOG6 with EggNOG-mapper, a tool for functional annotation based on precomputed orthology assignments. TreeProfiler provides options which allows users to directly map EggNOG-mapper outputs including functional annotations and pfam/smart domain predictions. Hence are then able to map these functional annotations to their respective phylogenetic gene trees and them with the evolutionary history, tracing from leaf to root level.

Map emapper annotation, pfam annotation and taxonomic annotation to target tree

treeprofiler annotate \
--tree  examples/pratical_example/emapper/nifH.tree \
--emapper-annotation examples/pratical_example/emapper/nifH.out.emapper.annotations \
--emapper-pfam examples/pratical_example/emapper/nifH.out.emapper.pfam \
--alignment examples/pratical_example/emapper/nifH.faa.aln \
--taxon-column name \
--taxadb NCBI \
--taxon-delimiter . \
--taxa-field 0 \
-o examples/pratical_example/emapper/

Visualize annotations of emapper, pfam domain and ncbi taxonomy

treeprofiler plot \
--tree examples/pratical_example/emapper/nifH_annotated.ete \
--input-type ete \
--emapper-layout \
--domain-layout \
--taxonclade-layout \
--column-width 70

visualization of categorical data seed_orthologs, max_annot_lvl, COG_category, Description, Preferred_name, and numerical data score

emapper example

visualization of KEGG_Pathway profiling

emapper example2

visualization of KEGG_ko profiling

emapper example3

visualization of domain annotation

emapper example4

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

TreeProfiler-1.2.3.tar.gz (19.3 MB view details)

Uploaded Source

Built Distributions

treeprofiler-1.2.3-py3-none-any.whl (14.1 MB view details)

Uploaded Python 3

TreeProfiler-1.2.3-py3-none-any.whl (19.5 MB view details)

Uploaded Python 3

File details

Details for the file TreeProfiler-1.2.3.tar.gz.

File metadata

  • Download URL: TreeProfiler-1.2.3.tar.gz
  • Upload date:
  • Size: 19.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.9

File hashes

Hashes for TreeProfiler-1.2.3.tar.gz
Algorithm Hash digest
SHA256 2a7cdeab76b24d33a472d3bd15b08cf02e2a5cea329b987bf65f4d780a2e9a8e
MD5 509ddc468e017f1dab1d13f1430beb8a
BLAKE2b-256 33ae4b5714292bae3633916272562d62c211911f58fd89e2fd9976371a2eb0fb

See more details on using hashes here.

File details

Details for the file treeprofiler-1.2.3-py3-none-any.whl.

File metadata

  • Download URL: treeprofiler-1.2.3-py3-none-any.whl
  • Upload date:
  • Size: 14.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for treeprofiler-1.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2300e2f378d679a10ae3b17b70c2f70f7b8d8864d2503cee7e702e78c3adedbb
MD5 87250ce3932758bd67b8f61e6f4e0adc
BLAKE2b-256 04155a25a603891a70d3a04a4c2a8eb12870e810ba52a7b35b5573ccc0d77220

See more details on using hashes here.

File details

Details for the file TreeProfiler-1.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for TreeProfiler-1.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 34130a8867baff4d043a83171aebb3f1b934713f8a9581228ff8e570289ee61c
MD5 5e18ecb46e78f0b566f6784212990e3c
BLAKE2b-256 26be88a55cfbeed3dc654f393999c2546e3e84cd0f39ea0d8575d0d809277919

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page