Skip to main content

a universal pytorch platform to conduct security researches

Project description

TrojanZoo

logo

contact

build docs python>=3.9 License CodeQL

release pypi docker

This is the code implementation (pytorch) for our paper:
TROJANZOO: Everything you ever wanted to know about neural backdoors (but were afraid to ask)

TrojanZoo provides a universal pytorch platform to conduct security researches (especially backdoor attacks/defenses) of image classification in deep learning. It is composed of two packages: trojanzoo and trojanvision. trojanzoo contains abstract classes and utilities, while trojanvision contains abstract and concrete ones for image classification task.

Dataset List
Model List
Attack List
Defense List

Note: This repository is also maintained to cover the implementation of
our kdd 2020 paper AdvMind: Inferring Adversary Intent of Black-Box Attacks
and ccs 2020 paper A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models.

Screenshot

screenshot

Features

  1. Colorful and verbose output!

    Note: enable with --color for color and --verbose for verbose.
    To open an interactive window with color, use python - --color

  2. Modular design (plug and play)
  3. Good code linting support (this package requires python>=3.9)
  4. Register your own module to the library.
  5. Native Pytorch Output
    trojanzoo and trojanvision provides API to generate raw pytorch instances, which makes it flexible to work with native pytorch and other 3rd party libraries.

    trojanzoo.datasets.DataSet can generate torch.utils.data.Dataset and torch.utils.data.DataLoader
    trojanzoo.models.Model attribute _model is torch.nn.Module, attribute model is torch.nn.DataParallel
    Specifically, trojanvision.datasets.ImageSet can generate torchvision.datasets.VisionDataset, trojanvision.datasets.ImageFolder can generate torchvision.datasets.ImageFolder

  6. Enable pytorch native AMP(Automatic Mixed Precision) with --amp for training
  7. Flexible Configuration Files
  8. Good help information to check arguments. (-h or --help)
  9. Detailed and well-organized summary() for each module.

Installation

  1. pip install trojanzoo
  2. (todo) conda install trojanzoo
  3. docker pull local0state/trojanzoo

Quick Start

You can use the provided example scripts to reproduce the evaluation results in our paper.

Note: The program won't save results without --save

  1. Train a model:
    e.g. ResNetComp18 on CIFAR10 with 95% Acc

    python train.py --verbose 1 --amp --dataset cifar10 --model resnetcomp18 --epoch 300 --lr 0.1 --lr_scheduler --lr_step_size 100 --save
    
  2. Test backdoor attack (e.g., BadNet):
    e.g. BadNet with ResNetComp18 on CIFAR10

    python backdoor_attack.py --verbose 1 --pretrain --validate_interval 1 --amp --dataset cifar10 --model resnetcomp18 --attack badnet --random_init --epoch 50 --lr 0.01 --save
    
  3. Test backdoor defense (e.g., Neural Cleanse):
    e.g. Neural Cleanse against BadNet

    python backdoor_attack.py --verbose 1 --pretrain --validate_interval 1 --dataset cifar10 --model resnetcomp18 --attack badnet --defense neural_cleanse --random_init --epoch 50 --lr 0.01
    

IMC

python backdoor_attack.py --verbose --pretrain --validate_interval 1 --amp --dataset cifar10 --model resnetcomp18 --attack imc --random_init --epoch 50 --lr 0.01 --save

AdvMind

(with attack adaptive and model adaptive)

python adv_defense.py --verbose --pretrain --validate_interval 1 --dataset cifar10 --model resnetcomp18 --attack pgd --defense advmind --attack_adapt --defense_adapt

Detailed Usage

Configuration file structure

All arguments in the parser are able to set default values in configuration files.
If argument values are not set in the config files, we will use the default values of __init__()

Parameters Config: (priority ascend order)

The higher priority config will override lower priority ones.
Within each priority channel, trojanvision configs will overwrite trojanzoo

  1. Package Default: /trojanzoo/configs/, /trojanvision/configs/

    These are package default settings. Please don't modify them.
    You can use this as a template to set other configs.

  2. User Default: Not decided yet.

    (Enable it in the code trojanzoo/configs/__init__.py, trojanvision/configs/__init__.py)

  3. Workspace Default: /configs/trojanzoo/, /configs/trojanvision/
  4. Custom Config: --config [config location]
  5. CMD parameters: --[parameter] [value]

Store path of Dataset, Model, Attack & Defense Results

Modify them in corresponding config files and command-line arguments.

Dataset: --data_dir (./data/data)
Model: --model_dir (./data/model)
Attack: --attack_dir (./data/attack)
Defense: --defense_dir (./data/defense)

Output Verbose Information:

  1. CMD modules: --verbose
  2. Colorful output: --color
  3. tqdm progress bar: --tqdm
  4. Check command-line argument usage: --help
  5. AdvMind verbose information: --output [number]

Use your DIY Dataset/Model/Attack/Defense

  1. Follow our example to write your DIY class. (CIFAR10, ResNet, IMC, Neural Cleanse)

    It's necessary to subclass our base class. (Dataset, Model, Attack, Defense)
    Optional base classes depending on your use case: (ImageSet, ImageFolder, ImageModel)

  2. Register your DIY class in trojanvision

    Example: trojanvision.attacks.class_dict[attack_name]=AttackClass

  3. Create your config files if necessary.
    No need to modify any codes. Just directly add {attack_name}.yml (.json) in the config directory.
  4. Good to go!

Todo List

  1. Sphinx Docs
  2. Unit test

License

TrojanZoo has a GPL-style license, as found in the LICENSE file.

Cite our paper

@InProceedings{pang2020trojanzoo,
      title={TROJANZOO: Everything you ever wanted to know about neural backdoors (but were afraid to ask)}, 
      author={Ren Pang and Zheng Zhang and Xiangshan Gao and Zhaohan Xi and Shouling Ji and Peng Cheng and Ting Wang},
      year={2020},
      booktitle={arXiv Preprint},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trojanzoo-1.0.5.tar.gz (3.7 MB view details)

Uploaded Source

Built Distribution

trojanzoo-1.0.5-py3-none-any.whl (3.7 MB view details)

Uploaded Python 3

File details

Details for the file trojanzoo-1.0.5.tar.gz.

File metadata

  • Download URL: trojanzoo-1.0.5.tar.gz
  • Upload date:
  • Size: 3.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for trojanzoo-1.0.5.tar.gz
Algorithm Hash digest
SHA256 2229fdbd03eb55433855c926410536dd8ccacad93b3702bd6529b15ff63f2a6f
MD5 8865291ade85bbfc28e7f7795d02b0cd
BLAKE2b-256 e5fc579b26a808eb13467fe47a82d7a663fc53df2e11547043ae4540db1bef04

See more details on using hashes here.

File details

Details for the file trojanzoo-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: trojanzoo-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for trojanzoo-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 57bba08a2744195bc2bc8e6dacdfb7646b2c7af9c21765e3eb7ad4d008d1be9d
MD5 eda444d48cd9ddf07c8ea25addfadfea
BLAKE2b-256 c717e4ce3737bf14b60f057232011753279d0a9abd4369bdd89a03e42f6f7652

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page