Skip to main content

a universal pytorch platform to conduct security researches

Project description

TrojanZoo

logo

contact

docs python>=3.10 License

release pypi docker

NOTE: TrojanZoo requires python>=3.10, pytorch>=1.11 and torchvision>=0.12, which must be installed manually. Recommend to use conda to install.

This is the code implementation (pytorch) for our paper in EuroS&P 2022:
TrojanZoo: Towards Unified, Holistic, and Practical Evaluation of Neural Backdoors

TrojanZoo provides a universal pytorch platform to conduct security researches (especially backdoor attacks/defenses) of image classification in deep learning. It is composed of two packages: trojanzoo and trojanvision. trojanzoo contains abstract classes and utilities, while trojanvision contains abstract and concrete ones for image classification task.

Note: This repository is also maintained to cover the implementation of
our kdd 2020 paper AdvMind: Inferring Adversary Intent of Black-Box Attacks
and ccs 2020 paper A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models

Documentation

We have documentation available at https://ain-soph.github.io/trojanzoo.

Screenshot

screenshot

Features

  1. Colorful and verbose output!

    Note: enable with --color for color and --verbose for verbose.
    To open an interactive window with color, use python - --color

  2. Modular design (plug and play)
  3. Good code linting support (this package requires python>=3.10)
  4. Register your own module to the library.
  5. Native Pytorch Output
    trojanzoo and trojanvision provides API to generate raw pytorch instances, which makes it flexible to work with native pytorch and other 3rd party libraries.

    trojanzoo.datasets.DataSet can generate torch.utils.data.Dataset and torch.utils.data.DataLoader
    trojanzoo.models.Model attribute _model is torch.nn.Module, attribute model is torch.nn.DataParallel
    Specifically, trojanvision.datasets.ImageSet can generate torchvision.datasets.VisionDataset, trojanvision.datasets.ImageFolder can generate torchvision.datasets.ImageFolder

  6. Enable pytorch native AMP(Automatic Mixed Precision) with --amp for training
  7. Flexible Configuration Files
  8. Good help information to check arguments. (-h or --help)
  9. Detailed and well-organized summary() for each module.

Installation

  1. pip install trojanzoo
  2. (todo) conda install trojanzoo
  3. docker pull local0state/trojanzoo or docker pull ghcr.io/ain-soph/trojanzoo
  4. (RECOMMEND)pip install -e . or python setup.py develop

    This could install the github repo as a package but avoid copying files to site_packages, so that you can easily keep it updated by doing github pull.

Quick Start

You can use the provided example scripts to reproduce the evaluation results in our paper.

Note: The program won't save results without --save

  1. Train a model:
    e.g. ResNet18 on CIFAR10 with 95% Acc

    python ./examples/train.py --color --verbose 1 --dataset cifar10 --model resnet18_comp --lr_scheduler --cutout --grad_clip 5.0 --save
    
  2. Test backdoor attack (e.g., BadNet):
    e.g. BadNet with ResNet18 on CIFAR10

    python ./examples/backdoor_attack.py --color --verbose 1 --pretrained --validate_interval 1 --dataset cifar10 --model resnet18_comp --attack badnet --mark_random_init --epochs 50 --lr 0.01 --save
    
  3. Test backdoor defense (e.g., Neural Cleanse):
    e.g. Neural Cleanse against BadNet

    python ./examples/backdoor_defense.py --color --verbose 1 --pretrained --validate_interval 1 --dataset cifar10 --model resnet18_comp --attack badnet --defense neural_cleanse --mark_random_init --epochs 50 --lr 0.01
    

IMC

python ./examples/backdoor_attack.py --color --verbose 1 --pretrained --validate_interval 1 --dataset cifar10 --model resnet18_comp --attack imc --mark_random_init --epochs 50 --lr 0.01 --save

AdvMind

(with attack adaptive and model adaptive)

python ./examples/adv_defense.py --color --verbose 1 --pretrained --validate_interval 1 --dataset cifar10 --model resnet18_comp --attack pgd --defense advmind --attack_adapt --defense_adapt

Detailed Usage

Configuration file structure

All arguments in the parser are able to set default values in configuration files.
If argument values are not set in the config files, we will use the default values of __init__()

Parameters Config: (priority ascend order)

The higher priority config will override lower priority ones.
Within each priority channel, trojanvision configs will overwrite trojanzoo

  1. Package Default: /trojanzoo/configs/, /trojanvision/configs/

    These are package default settings. Please don't modify them.
    You can use this as a template to set other configs.

  2. User Default: ~/.trojanzoo/configs/trojanzoo/, ~/.trojanzoo/configs/trojanvision/
  3. Workspace Default: /configs/trojanzoo/, /configs/trojanvision/
  4. Custom Config: --config [config location]
  5. CMD parameters: --[parameter] [value]

Store path of Dataset, Model, Attack & Defense Results

Modify them in corresponding config files and command-line arguments.

Dataset: --data_dir (./data/data)
Model: --model_dir (./data/model)
Attack: --attack_dir (./data/attack)
Defense: --defense_dir (./data/defense)

Output Verbose Information:

  1. CMD modules: --verbose 1
  2. Colorful output: --color
  3. tqdm: --tqdm
  4. Check command-line argument usage: --help
  5. AdvMind verbose information: --output [number]

Use your DIY Dataset/Model/Attack/Defense

  1. Follow our example to write your DIY class. (CIFAR10, ResNet, IMC, Neural Cleanse)

    It's necessary to subclass our base class. (Dataset, Model, Attack, Defense)
    Optional base classes depending on your use case: (ImageSet, ImageFolder, ImageModel)

  2. Register your DIY class in trojanvision

    Example: trojanvision.attacks.class_dict[attack_name]=AttackClass

  3. Create your config files if necessary.
    No need to modify any codes. Just directly add {attack_name}.yml (.json) in the config directory.
  4. Good to go!

Todo List

  1. Sphinx Docs
  2. Unit test

License

TrojanZoo has a GPL-style license, as found in the LICENSE file.

Cite our paper

@InProceedings{pang:2022:eurosp,
      title={TrojanZoo: Towards Unified, Holistic, and Practical Evaluation of Neural Backdoors}, 
      author={Ren Pang and Zheng Zhang and Xiangshan Gao and Zhaohan Xi and Shouling Ji and Peng Cheng and Ting Wang},
      year={2022},
      booktitle={Proceedings of IEEE European Symposium on Security and Privacy (Euro S\&P)},
}

@inproceedings{pang:2020:ccs, 
    title = "{A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models}", 
    author = {Ren Pang and Hua Shen and Xinyang Zhang and Shouling Ji and Yevgeniy Vorobeychik and Xiapu Luo and Alex Liu and Ting Wang}, 
    year = {2020}, 
    booktitle = {Proceedings of ACM SAC Conference on Computer and Communications (CCS)},
}

@inproceedings{pang:2020:kdd, 
    title = "{A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models}", 
    author = {Ren Pang and Xinyang Zhang and Shouling Ji and Xiapu Luo and Ting Wang}, 
    year = {2020}, 
    booktitle = {Proceedings of ACM International Conference on Knowledge Discovery and Data Mining (KDD)},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trojanzoo-1.1.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

trojanzoo-1.1.0-py3-none-any.whl (549.1 kB view details)

Uploaded Python 3

File details

Details for the file trojanzoo-1.1.0.tar.gz.

File metadata

  • Download URL: trojanzoo-1.1.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for trojanzoo-1.1.0.tar.gz
Algorithm Hash digest
SHA256 e62c7d9f367a04c2917f7c8cd1b949b0634a3d2cd67390a320484c9369ce7762
MD5 8a0f38fc985a36d70e2818f165843db8
BLAKE2b-256 ce66fef51073ea3a4f3e7db2680dc1a367ee62e9aaeaef36a59382b6a34f9788

See more details on using hashes here.

File details

Details for the file trojanzoo-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: trojanzoo-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 549.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for trojanzoo-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e57039e2f6e63ec0a5d4cd3ea755df6475362ed3efca2695d197acb07da504a5
MD5 d2c8ed68d50ae968a6721ab6fe08f78c
BLAKE2b-256 8a6ce8a40b0f17229b39f638eda50c333794cee64241022694ab786c700cd17c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page