Skip to main content

Library for time series feature extraction

Project description

Documentation Status license PyPI - Python Version PyPI Downloads Open In Colab

Time Series Feature Extraction Library

Intuitive time series feature extraction

This repository hosts the TSFEL - Time Series Feature Extraction Library python package. TSFEL assists researchers on exploratory feature extraction tasks on time series without requiring significant programming effort.

Users can interact with TSFEL using two methods:

Online

It does not requires installation as it relies on Google Colabs and a user interface provided by Google Sheets

Offline

Advanced users can take full potential of TSFEL by installing as a python package

pip
install
tsfel

Includes a comprehensive number of features

TSFEL is optimized for time series and automatically extracts over 65 different features on the statistical, temporal, spectral and fractal domains.

Functionalities

  • Intuitive, fast deployment and reproducible: interactive UI for feature selection and customization
  • Computational complexity evaluation: estimate the computational effort before extracting features
  • Comprehensive documentation: each feature extraction method has a detailed explanation
  • Unit tested: we provide unit tests for each feature
  • Easily extended: adding new features is easy and we encourage you to contribute with your custom features

Get started

The code below extracts all the available features on an example dataset file.

import tsfel
import pandas as pd

# load dataset
df = pd.read_csv("Dataset.txt")

# Retrieves a pre-defined feature configuration file to extract all available features
cfg = tsfel.get_features_by_domain()

# Extract features
X = tsfel.time_series_features_extractor(cfg, df)

Available features

Statistical domain

Features Computational Cost
Absolute energy 1
Average power 1
ECDF 1
ECDF Percentile 1
ECDF Percentile Count 1
Entropy 1
Histogram 1
Interquartile range 1
Kurtosis 1
Max 1
Mean 1
Mean absolute deviation 1
Median 1
Median absolute deviation 1
Min 1
Root mean square 1
Skewness 1
Standard deviation 1
Variance 1

Temporal domain

Features Computational Cost
Area under the curve 1
Autocorrelation 2
Centroid 1
Lempel-Ziv-Complexity* 2
Mean absolute diff 1
Mean diff 1
Median absolute diff 1
Median diff 1
Negative turning points 1
Peak to peak distance 1
Positive turning points 1
Signal distance 1
Slope 1
Sum absolute diff 1
Zero crossing rate 1
Neighbourhood peaks 1

* Disabled by default due to its longer execution time compared to other features.

Spectral domain

Features Computational Cost
FFT mean coefficient 1
Fundamental frequency 1
Human range energy 1
LPCC 1
MFCC 1
Max power spectrum 1
Maximum frequency 1
Median frequency 1
Power bandwidth 1
Spectral centroid 2
Spectral decrease 1
Spectral distance 1
Spectral entropy 1
Spectral kurtosis 2
Spectral positive turning points 1
Spectral roll-off 1
Spectral roll-on 1
Spectral skewness 2
Spectral slope 1
Spectral spread 2
Spectral variation 1
Wavelet absolute mean 2
Wavelet energy 2
Wavelet standard deviation 2
Wavelet entropy 2
Wavelet variance 2

Fractal domain

Features Computational Cost
Detrended fluctuation analysis (DFA) 3
Higuchi fractal dimension 3
Hurst exponent 3
Maximum fractal length 3
Multiscale entropy (MSE) 1
Petrosian fractal dimension 1

Fractal domain features are typically applied to relatively longer signals to capture meaningful patterns, and it's usually unnecessary to previously divide the signal into shorter windows. Therefore, this domain is disabled in the default feature configuration files.

Citing

When using TSFEL please cite the following publication:

Barandas, Marília and Folgado, Duarte, et al. "TSFEL: Time Series Feature Extraction Library." SoftwareX 11 ( 2020). https://doi.org/10.1016/j.softx.2020.100456

Acknowledgements

We would like to acknowledge the financial support obtained from the project Total Integrated and Predictive Manufacturing System Platform for Industry 4.0, co-funded by Portugal 2020, framed under the COMPETE 2020 (Operational Programme Competitiveness and Internationalization) and European Regional Development Fund (ERDF) from European Union ( EU), with operation code POCI-01-0247-FEDER-038436.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tsfel-0.1.7.tar.gz (53.1 kB view details)

Uploaded Source

Built Distribution

tsfel-0.1.7-py3-none-any.whl (55.8 kB view details)

Uploaded Python 3

File details

Details for the file tsfel-0.1.7.tar.gz.

File metadata

  • Download URL: tsfel-0.1.7.tar.gz
  • Upload date:
  • Size: 53.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for tsfel-0.1.7.tar.gz
Algorithm Hash digest
SHA256 6d1c00934f76adee8c15f7fb0ffd707b1212b71486a2e1e4edf8ada7c123bd9f
MD5 2c8b81f056a8e2fad1c213daf54248a3
BLAKE2b-256 7d347141712a6d642784d7c04edb9b21990b93794aabf8e8e1f7418cb7672bc3

See more details on using hashes here.

File details

Details for the file tsfel-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: tsfel-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 55.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for tsfel-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 02c6126e85664e9f854c22750bd5970c8ca50cd44951c4873d177db568fb786d
MD5 9c4262b0adcde17ecc071c0fef11a2a9
BLAKE2b-256 3fb815ebfda7ca2addef96b909495558efb4e718c3200ac298dfc4c143f46e2d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page