Skip to main content

No project description provided

Project description

TSFX

TSFX -- Time Series Feature eXtraction

About

TSFX is a Python library for extracting features from time series data. Inspired by the great TSFresh library, TSFX aims to provide a similar feature set focused on performance on large datasets. In order to achieve this, TSFX is built on top of the Polars DataFrame library, and feature extractors are implemented in Rust.

Installation

Install from PyPI:

pip install tsfx

Usage

Below is a simple example of extracting features from a time series dataset:

import polars as pl
from tsfx import (
    DynamicGroupBySettings,
    ExtractionSettings,
    FeatureSetting,
    extract_features,
)

df = pl.DataFrame(
    {
        "id": ["a", "a", "a", "b", "b", "b", "c", "c", "c"],
        "val": [1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
        "value": [4.0, 5.0, 6.0, 6.0, 5.0, 4.0, 4.0, 5.0, 6.0],
    },
).lazy()
settings = ExtractionSettings(
    grouping_col="id",
    feature_setting=FeatureSetting.Efficient,
    value_cols=["val", "value"],
)
gdf = extract_features(df, settings)
gdf = gdf.sort(by="id")
print(gdf)

which produces the following output:

shape: (3, 316)
┌─────┬────────┬─────────────┬───────────┬───┬─────────────┬─────────────┬────────────┬────────────┐
│ id   length  val__sum_va  val__mean    value__numb  value__numb  value__num  value__num │
│ ---  ---     lues         ---           er_peaks__n  er_peaks__n  ber_peaks_  ber_peaks_ │
│ str  u32     ---          f32           _3           _5           _n_10       _n_50      │
│              f32                        ---          ---          ---         ---        │
│                                         f32          f32          f32         f32        │
╞═════╪════════╪═════════════╪═══════════╪═══╪═════════════╪═════════════╪════════════╪════════════╡
│ a    3       6.0          2.0          0.0          0.0          0.0         0.0        │
│ b    3       6.0          2.0          0.0          0.0          0.0         0.0        │
│ c    3       6.0          2.0          0.0          0.0          0.0         0.0        │
└─────┴────────┴─────────────┴───────────┴───┴─────────────┴─────────────┴────────────┴────────────┘

Extracting over a time window

An additional feature of TSFX is the ability to extract features over a time window. Below is an example of extracting features over a 3 year window:

import polars as pl
from tsfx import (
    DynamicGroupBySettings,
    ExtractionSettings,
    FeatureSetting,
    extract_features,
)
tdf = pl.DataFrame(
    {
        "id": ["a", "a", "a", "b", "b", "b", "c", "c", "c"],
        "time": [
            "2001-01-01",
            "2002-01-01",
            "2003-01-01",
            "2001-01-01",
            "2002-01-01",
            "2003-01-01",
            "2001-01-01",
            "2002-01-01",
            "2003-01-01",
        ],
        "val": [1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
        "value": [4.0, 5.0, 6.0, 6.0, 5.0, 4.0, 4.0, 5.0, 6.0],
    },
).lazy()

dyn_settings = DynamicGroupBySettings(
    time_col="time",
    every="3y",
    period="3y",
    offset="0",
    datetime_format="%Y-%m-%d",
)
settings = ExtractionSettings(
    grouping_col="id",
    value_cols=["val", "value"],
    feature_setting=FeatureSetting.Efficient,
    dynamic_settings=dyn_settings,
)
gdf = extract_features(tdf, settings)
gdf = gdf.sort(by="id")
print(gdf)

which produces the following output:

shape: (3, 317)
┌─────┬────────────┬────────┬─────────────┬───┬─────────────┬────────────┬────────────┬────────────┐
│ id   time        length  val__sum_va    value__numb  value__num  value__num  value__num │
│ ---  ---         ---     lues            er_peaks__n  ber_peaks_  ber_peaks_  ber_peaks_ │
│ str  date        u32     ---             _3           _n_5        _n_10       _n_50      │
│                          f32             ---          ---         ---         ---        │
│                                          f32          f32         f32         f32        │
╞═════╪════════════╪════════╪═════════════╪═══╪═════════════╪════════════╪════════════╪════════════╡
│ a    2001-01-01  3       6.0            0.0          0.0         0.0         0.0        │
│ b    2001-01-01  3       6.0            0.0          0.0         0.0         0.0        │
│ c    2001-01-01  3       6.0            0.0          0.0         0.0         0.0        │
└─────┴────────────┴────────┴─────────────┴───┴─────────────┴────────────┴────────────┴────────────┘

For more examples, see the examples directory.

Feature Coverage Compared to TSFresh

Implemented Function Description
abs_energy(x) Returns the absolute energy of the time series which is the sum over the squared values
absolute_maximum(x) Calculates the highest absolute value of the time series x
absolute_sum_of_changes(x) Returns the sum over the absolute value of consecutive changes in the series x
agg_autocorrelation(x, param) Descriptive statistics on the autocorrelation of the time series
agg_linear_trend(x, param) Calculates a linear least-squares regression for values of the time series that were aggregated over chunks versus the sequence from 0 up to the number of chunks minus one
approximate_entropy(x, m, r) Implements a vectorized Approximate entropy algorithm
ar_coefficient(x, param) This feature calculator fits the unconditional maximum likelihood of an autoregressive AR(k) process
augmented_dickey_fuller(x, param) Does the time series have a unit root?
autocorrelation(x, lag) Calculates the autocorrelation of the specified lag, according to the formula [1]
benford_correlation(x) Useful for anomaly detection applications [1][2]. Returns the correlation from first digit distribution when
binned_entropy(x, max_bins) First bins the values of x into max_bins equidistant bins
c3(x, lag) Uses c3 statistics to measure non linearity in the time series
change_quantiles(x, ql, qh, isabs, f_agg) First fixes a corridor given by the quantiles ql and qh of the distribution of x
cid_ce(x, normalize) This function calculator is an estimate for a time series complexity [1] (A more complex time series has more peaks, valleys etc.).
count_above(x, t) Returns the percentage of values in x that are higher than t
count_above_mean(x) Returns the number of values in x that are higher than the mean of x
count_below(x, t) Returns the percentage of values in x that are lower than t
count_below_mean(x) Returns the number of values in x that are lower than the mean of x
cwt_coefficients(x, param) Calculates a Continuous wavelet transform for the Ricker wavelet, also known as the "Mexican hat wavelet" which is defined by
energy_ratio_by_chunks(x, param) Calculates the sum of squares of chunk i out of N chunks expressed as a ratio with the sum of squares over the whole series.
fft_aggregated(x, param) Returns the spectral centroid (mean), variance, skew, and kurtosis of the absolute fourier transform spectrum
fft_coefficient(x, param) Calculates the fourier coefficients of the one-dimensional discrete Fourier Transform for real input by fast fourier transformation algorithm
first_location_of_maximum(x) Returns the first location of the maximum value of x
first_location_of_minimum(x) Returns the first location of the minimal value of x
fourier_entropy(x, bins) Calculate the binned entropy of the power spectral density of the time series (using the welch method)
friedrich_coefficients(x, param) Coefficients of polynomial h(x), which has been fitted to the deterministic dynamics of Langevin model
has_duplicate(x) Checks if any value in x occurs more than once
has_duplicate_max(x) Checks if the maximum value of x is observed more than once
has_duplicate_min(x) Checks if the minimal value of x is observed more than once
index_mass_quantile(x, param) Calculates the relative index i of time series x where q% of the mass of x lies left of i.
kurtosis(x) Returns the kurtosis of x (calculated with the adjusted Fisher-Pearson standardized moment coefficient G2).
large_standard_deviation(x, r) Does time series have large standard deviation?
last_location_of_maximum(x) Returns the relative last location of the maximum value of x.
last_location_of_minimum(x) Returns the last location of the minimal value of x.
lempel_ziv_complexity(x, bins) Calculate a complexity estimate based on the Lempel-Ziv compression algorithm.
length(x) Returns the length of x
linear_trend(x, param) Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to length of the time series minus one.
linear_trend_timewise(x, param) Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to length of the time series minus one.
longest_strike_above_mean(x) Returns the length of the longest consecutive subsequence in x that is bigger than the mean of x
longest_strike_below_mean(x) Returns the length of the longest consecutive subsequence in x that is smaller than the mean of x
matrix_profile(x, param) Calculates the 1-D Matrix Profile[1] and returns Tukey's Five Number Set plus the mean of that Matrix Profile.
max_langevin_fixed_point(x, r, m) Largest fixed point of dynamics :math:argmax_x {h(x)=0} estimated from polynomial h(x), which has been fitted to the deterministic dynamics of Langevin model
maximum(x) Calculates the highest value of the time series x.
mean(x) Returns the mean of x
mean_abs_change(x) Average over first differences.
mean_change(x) Average over time series differences.
mean_n_absolute_max(x, number_of_maxima) Calculates the arithmetic mean of the n absolute maximum values of the time series.
mean_second_derivative_central(x) Returns the mean value of a central approximation of the second derivative
median(x) Returns the median of x
minimum(x) Calculates the lowest value of the time series x.
number_crossing_m(x, m) Calculates the number of crossings of x on m.
number_cwt_peaks(x, n) Number of different peaks in x.
number_peaks(x, n) Calculates the number of peaks of at least support n in the time series x.
partial_autocorrelation(x, param) Calculates the value of the partial autocorrelation function at the given lag.
percentage_of_reoccurring_datapoints_to_all_datapoints(x) Returns the percentage of non-unique data points.
percentage_of_reoccurring_values_to_all_values(x) Returns the percentage of values that are present in the time series more than once.
permutation_entropy(x, tau, dimension) Calculate the permutation entropy.
quantile(x, q) Calculates the q quantile of x.
query_similarity_count(x, param) This feature calculator accepts an input query subsequence parameter, compares the query (under z-normalized Euclidean distance)to all subsequences within the time series, and returns a count of the number of times the query was found in the time series (within some predefined maximum distance threshold).
range_count(x, min, max) Count observed values within the interval [min, max].
ratio_beyond_r_sigma(x, r) Ratio of values that are more than r * std(x) (so r times sigma) away from the mean of x.
ratio_value_number_to_time_series_length(x) Returns a factor which is 1 if all values in the time series occur only once, and below one if this is not the case.
root_mean_square(x) Returns the root mean square (rms) of the time series.
sample_entropy(x) Calculate and return sample entropy of x.
skewness(x) Returns the sample skewness of x (calculated with the adjusted Fisher-Pearson standardized moment coefficient G1).
spkt_welch_density(x, param) This feature calculator estimates the cross power spectral density of the time series x at different frequencies.
standard_deviation(x) Returns the standard deviation of x
sum_of_reoccurring_data_points(x) Returns the sum of all data points, that are present in the time series more than once.
sum_of_reoccurring_values(x) Returns the sum of all values, that are present in the time series more than once.
sum_values(x) Calculates the sum over the time series values
symmetry_looking(x, param) Boolean variable denoting if the distribution of x looks symmetric.
time_reversal_asymmetry_statistic(x, lag) Returns the time reversal asymmetry statistic.
value_count(x, value) Count occurrences of value in time series x.
variance(x) Returns the variance of x
variance_larger_than_standard_deviation(x) Is variance higher than the standard deviation?
variation_coefficient(x) Returns the variation coefficient (standard error / mean, give relative value of variation around mean) of x.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tsfx-0.1.3.tar.gz (10.1 MB view details)

Uploaded Source

Built Distributions

tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl (14.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl (14.5 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl (13.9 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl (13.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl (14.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl (14.5 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl (13.9 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl (13.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl (14.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_i686.whl (14.5 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl (13.9 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl (13.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

tsfx-0.1.3-cp312-none-win_amd64.whl (12.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

tsfx-0.1.3-cp312-none-win32.whl (10.6 MB view details)

Uploaded CPython 3.12 Windows x86

tsfx-0.1.3-cp312-cp312-musllinux_1_2_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

tsfx-0.1.3-cp312-cp312-musllinux_1_2_i686.whl (14.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

tsfx-0.1.3-cp312-cp312-musllinux_1_2_armv7l.whl (13.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

tsfx-0.1.3-cp312-cp312-musllinux_1_2_aarch64.whl (13.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

tsfx-0.1.3-cp312-cp312-macosx_11_0_arm64.whl (11.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

tsfx-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl (12.6 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

tsfx-0.1.3-cp311-none-win_amd64.whl (12.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

tsfx-0.1.3-cp311-none-win32.whl (10.6 MB view details)

Uploaded CPython 3.11 Windows x86

tsfx-0.1.3-cp311-cp311-musllinux_1_2_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

tsfx-0.1.3-cp311-cp311-musllinux_1_2_i686.whl (14.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

tsfx-0.1.3-cp311-cp311-musllinux_1_2_armv7l.whl (13.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

tsfx-0.1.3-cp311-cp311-musllinux_1_2_aarch64.whl (13.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

tsfx-0.1.3-cp311-cp311-macosx_11_0_arm64.whl (11.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tsfx-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl (12.6 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

tsfx-0.1.3-cp310-none-win_amd64.whl (12.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

tsfx-0.1.3-cp310-none-win32.whl (10.6 MB view details)

Uploaded CPython 3.10 Windows x86

tsfx-0.1.3-cp310-cp310-musllinux_1_2_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

tsfx-0.1.3-cp310-cp310-musllinux_1_2_i686.whl (14.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

tsfx-0.1.3-cp310-cp310-musllinux_1_2_armv7l.whl (13.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

tsfx-0.1.3-cp310-cp310-musllinux_1_2_aarch64.whl (13.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

tsfx-0.1.3-cp310-cp310-macosx_11_0_arm64.whl (11.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tsfx-0.1.3-cp39-none-win_amd64.whl (12.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

tsfx-0.1.3-cp39-none-win32.whl (10.6 MB view details)

Uploaded CPython 3.9 Windows x86

tsfx-0.1.3-cp39-cp39-musllinux_1_2_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

tsfx-0.1.3-cp39-cp39-musllinux_1_2_i686.whl (14.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

tsfx-0.1.3-cp39-cp39-musllinux_1_2_armv7l.whl (13.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

tsfx-0.1.3-cp39-cp39-musllinux_1_2_aarch64.whl (13.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

tsfx-0.1.3-cp39-cp39-macosx_11_0_arm64.whl (11.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tsfx-0.1.3-cp38-none-win_amd64.whl (12.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

tsfx-0.1.3-cp38-none-win32.whl (10.6 MB view details)

Uploaded CPython 3.8 Windows x86

tsfx-0.1.3-cp38-cp38-musllinux_1_2_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

tsfx-0.1.3-cp38-cp38-musllinux_1_2_i686.whl (14.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

tsfx-0.1.3-cp38-cp38-musllinux_1_2_armv7l.whl (13.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

tsfx-0.1.3-cp38-cp38-musllinux_1_2_aarch64.whl (13.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

File details

Details for the file tsfx-0.1.3.tar.gz.

File metadata

  • Download URL: tsfx-0.1.3.tar.gz
  • Upload date:
  • Size: 10.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3.tar.gz
Algorithm Hash digest
SHA256 89bcbb42990829b601d90f117ac53bd0defa929731b6d47adc3f8f20802a2b66
MD5 d07028c464bb4e50b7a7c85a5c298a20
BLAKE2b-256 2b31305d91ff29cdc2b055f7bb377d99c23da235ca8ad7a832970d35d2bbb151

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c6df452224fc5d2614e23e0505e951894cf70513001d92b8476a754f8381a784
MD5 449ac3afc47c342c825ad5c6e9b69f6a
BLAKE2b-256 f07fa2d068b260de25b73b8172b1da1748415f96595c56a0d978888e151c650c

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9d811ab2ee323fc31150da4bab2f25b5a9c1dc34858b6c633e663f1c14498f61
MD5 3f701daa400cbd77eeac777de6ca5392
BLAKE2b-256 91126a03915d66413fbc6eda9c3cefb868cd4f2c8f729b2576b9e560712f20cf

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 5a5026e02fc8be59acceb2f59ae51f8fe6971d04fbaddda015d97196188bc3fe
MD5 45a50dc2b3de552186bf709a09c29d95
BLAKE2b-256 510f1c23c01502404575cba02c514f709dbb25c16629cee9faf0689e9997edcc

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d67ce3feb600183c289f1782955b0d5e15681ef1b29079b566a110d636c0fe72
MD5 5a8763cd27abc92fc55d26f1451a4f1e
BLAKE2b-256 cfc1450865624de1cbf4f6dfdbb98737838530d2df1c3c8d732bd13239ff4b18

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0618fe8bf3e5d0643fce72e557d3c571ca194c714a8eff707fc1ab7e878a53b4
MD5 f0905b8c6d0f808db11f759ad96708e6
BLAKE2b-256 c8b3612d9a3433079d38974cc4487529bd8cf91f3575a91d5d372c5f14c27949

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1365f00d1ee27be9378d7b96a095453ded4654ab4cf8c28b2a68fa08abc00d70
MD5 0d02eef582d2dabc83e605d43b52d9a0
BLAKE2b-256 2caee5d4ffd921fffe8fba1178f9b0cd3cdd44f02ff79974d3bdae11cba31829

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 d5a1f25115306b1fcbc3f5f8e6183c66099362cab53470bc325cdcc0ffa6ba87
MD5 3f76057d01c10108a6b7f7ddebdadedd
BLAKE2b-256 d06fc1fb0c2f13148174b9eb2c21bfafd381941e7b87f4dc831b7fd2daf347ed

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 212cd548ed69613eda20c2fb76b759ed8504dfa313286de956d6c47a7347486c
MD5 c8657f4ae5270e1519604a252abda3db
BLAKE2b-256 f40ace677a585c4a7e811daa1b06f823ed29d936fe279a199726d432614cacc3

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c48071905388986a3a9e47ff24df1f1e26befddea7e58dbdb0ec56da5da0435f
MD5 b7940de1be3cf30595270ec92989b45f
BLAKE2b-256 0c4d3a0b393308d6084d6cbcf175f9b88729c920dd7abdc508323c425a09d0b0

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b3bc370bf46f35c6b59ee66f286f46807ce3574ecd25f1c4ce581e9cad342076
MD5 0349125eb169968466da027c90f1606b
BLAKE2b-256 0462a1dc44e3f49da1878dacbf36202221969ec699271fb3aa0153af39757f90

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 0d22d12f189e089d7578b58cd1fed145c72b34d03349c790cb32cc1986ae3174
MD5 61b62911a6cc7e3b7ef421949da9d0d0
BLAKE2b-256 67ef7b9e8c350be500ee2f323aceef9f6a87e14d40d7ed9c390ef39b22bbfbdd

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 be743f6d25b21c462e6a51efa1bb10665cc037c4fa85894b539d2fe0e70a9551
MD5 d138207ce448feb36bc13036e3b4d108
BLAKE2b-256 e672fae0ab3a4c7c411194180427d4ed0d9909f890ed05cc9c1ba0ddfa503549

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp312-none-win_amd64.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 3f49d99ff8af68aa3600aaf748559f727bdf63a4e303f03a93a23704c843fe8c
MD5 b10ff5baa78bb6178c50fa81caea07b9
BLAKE2b-256 5af9183b1d6fcc02055b99d930846abbc249536637e7a7a1ecd73b1e372c9908

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp312-none-win32.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp312-none-win32.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp312-none-win32.whl
Algorithm Hash digest
SHA256 9f589c43489f9b821cebd53fccd8e9cef3a3213ba24fa598a56d4c85393580d5
MD5 011f5c9a374fc815d9c55efd4f211867
BLAKE2b-256 b7b0a0f40861fb0f437a0a6362bdecc21ea27ed5809369c76a944ede769337f4

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 92cbee1cabe5bd969ad4959612c3a8d9bb017a5de225b7b32e5fb10f907d37a8
MD5 3167c8f55a4274c62ce8fc89b22b3dcc
BLAKE2b-256 1ec8abaf19aa75eb610a7c589331076a7792a1c15674fc2580efa8c914c6a3d8

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 cdaae96dbbeeceb8c3abb1cde366d6af21fb094912f017409deb78df96115e19
MD5 90fa23c1c58ec82309dedf26a3f27164
BLAKE2b-256 a3b64ed54b6c0c4cccad10747a6bb4156f32d20123699eb451dc80ab39598571

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 13c8d6a912e00acd48bc896bba51d2cc772afdce8a2d301beefc32c1cea0496d
MD5 6586f6defe163450f22f2969f01a52a5
BLAKE2b-256 974b71e412c8f26177e411e15ac512ddce9d31a23a74c074640eda5ecb713d28

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f8efca330fd177aa7483a5851ebd9e91414bf01dd402008025270c0f91baea70
MD5 4a9543f0592241474e700f32c62c2383
BLAKE2b-256 40e6da9eade3389df329c2921fc33f0a212725fa2903f89b5d543c453c5a767a

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ef771cb0c004bed6b52b5057810d9462c2269d99a052cc5484c495199128dac0
MD5 aac4191541f310f9b434aa84242e00ba
BLAKE2b-256 36ef51e1b0902d3107d61582a3d04b8852eaa0400409c98df6006c51cabab862

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 109758b047737045452bec5f62002f2c8e7f6b2046083252458f887aaaf05991
MD5 dd59d751e2e5490f2cdacc87b5d3d7c1
BLAKE2b-256 b59abfb581260f628522a730c4204ab2d037756070fcede24b9fd4ee9e795e5e

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp311-none-win_amd64.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 1d81c2c9c9d543bc6886712654f5cc6525884951f664a7fd2c6a024bbd12cc79
MD5 2b35ee28818d151fef3e9e1a888b441a
BLAKE2b-256 f6b0b80cf998714dbd3abeeb9bdc0403e04077efb5d45252d7a78c2d133ce65d

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp311-none-win32.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp311-none-win32.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp311-none-win32.whl
Algorithm Hash digest
SHA256 9a6070c45aadbb48bfbffd36a70fc6c98e89064ea58da91671f50c1ecd04422c
MD5 c6c96b375885c802f2a996d68809be27
BLAKE2b-256 dc74e7d8291834bc108cbd0c0a7d5bae7173aa86d69a2b569b0c2982585b1e17

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5a90f377e587fe33b2c14952f289acea5f3645ca06b177fa1ffbafbe3321024a
MD5 41f3343a3e9cb5b7a891650df6bdf2c5
BLAKE2b-256 dd03bf2f683b3233935bd7a45d54497c3757e228fe10d0b3720eecf3b6fa4712

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c702b138b7b5ecbc51be9d336a3f0a1c18d9e84bda471a8a22ec243d6e8f2b00
MD5 79e6562587922f57f57af34cd2ab75fd
BLAKE2b-256 a15868d851ae21a06d72ec5d024b32c9f76388288db7457992b2ffea3b3c62fd

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 e842dbb18329af80be2ed2646508c9446520bd89caac52d5b08b353152dcfafe
MD5 986ec062f986ce5a35206ffc36ade250
BLAKE2b-256 95811f2aa15c383e5d8c5ed7b3e99e2376eab8c70fc3630cc2251792977d47e7

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a692cc904992615dd611b16505a186a2d9755c37643c7bda445ed7cd2fffe654
MD5 f8d9e74f8608a1ea254e258f2b271f38
BLAKE2b-256 a29b56c26e1fa3782bd2593cdb7016b6ff661c7796911b1de354e284f13b5b52

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0a4367887dd2e43601b2ea0a49c317e3c488c9e296d0e19c14d802310cf660dd
MD5 1bd5b626148fd21d045cf173ea5c9407
BLAKE2b-256 248f35de56ffff836935ccea1b847dccf19fc8847071ca0eeb921eca609c1659

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9698c516351c2bb2bd60b493185d17c35a0f33792d8b877702e90b287ee2152f
MD5 e5ce8157e763b0f5dedc4a52caf2fc86
BLAKE2b-256 bfc08bd147478ac49a3105764068d598d9c8192b69ee777ccfe9b1e15e345826

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp310-none-win_amd64.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 1328391907e59cce0b871a32deb3ba3bea97e403feaf61a810e955408e4a2670
MD5 f4a6c3e56d87256862140a02ad774786
BLAKE2b-256 7d98a1930e137cd55f8588cb5da8052f304f18f988601dfeb18d93ccde698b97

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp310-none-win32.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp310-none-win32.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp310-none-win32.whl
Algorithm Hash digest
SHA256 976ce6aeaee058e9e005d9ed366b5d0265fac1c8ef2c257ac3a65182169613b0
MD5 c45fcfefb4e49189e9e6aef9c9d67415
BLAKE2b-256 6eb3e602be3dc799906cc214d2f1a79f06b5cc4493d7d6745422ef28f459fb40

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3c74d7f867a2a1b5e6001aca745bd2f0950feb6e3ca5c14abf561e10faeb74c7
MD5 8d9974dbf725b18398260f23db358ecd
BLAKE2b-256 3e9b60b77dd5fdd25bd2e36bfa720cf2e401bec28ec3f3627d8a8277ae5311c3

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9690a4c04861e5a2cc2583304b4d160bed90039f18aade31853d0c28cd9f7788
MD5 93a9796e81211caaa0d70bf6ff676ae5
BLAKE2b-256 7614f3fbed4586a69c1ad637611e9e2e60f191c7837fb6524575524438c880ca

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 7025bf99dcceb1b3208ca66f858178b16457aacfbb70d0047bfa7662ef6a82cd
MD5 c9cc10fd0f0bb6589828f1880d8dbcb2
BLAKE2b-256 a2125afa1b04fe5450acc7735cc54d0ad8dda3721426bfbfd151bb3542004553

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4bb22e37debaa9b9ec277ce3e3c117de89d49a1648dd0d8be23dd2d95a55f6bf
MD5 ac6d2ee67cd9ce0e5af9090b7bb3bd01
BLAKE2b-256 0a4ce100c9ff2829d7b4447f5f430af24f6e49554568a13d23d44e2f757c371b

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8fc7341e13c08fb280cec116a039a7898b6fbe66157868003d7d0d7b5e18359b
MD5 e623a385e96a5bd81d07a6a8ddf34306
BLAKE2b-256 a4f500b5e3885d9cde901e6909c3ddd6e5392f6f704effc1dac13c53ad757e38

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp39-none-win_amd64.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 d8b9dc099440bbedbd2c6feb74f84a26225fdf2895c6483c0fc0e26cdb74ccbb
MD5 e25de68e880a9beac0ee74c3a8928dc6
BLAKE2b-256 792df3244f8c27b280b7925039d849514754968d9198ba808aeb9c9a3c8a49f8

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp39-none-win32.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp39-none-win32.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp39-none-win32.whl
Algorithm Hash digest
SHA256 69202e27b11ef314f5f75d8414ae27db014402f39c49500e22bf09b97db1f845
MD5 4a59991afb938ebc04d79ef12d2ff79f
BLAKE2b-256 c7fdb573a15b2ea14226714505b0129563cc4e12d9dea0794d625b7b1642a39a

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e42a10b8ede3bd8e18b4eeee148d0f50b38b7cc26c416e96f6c82fcd3f06cf06
MD5 6073be9821f6b9712adb99d8c16421bc
BLAKE2b-256 df815185a49b43a56bbc9b3232eb19da2656ab14023505bb4507bf72ccd491bf

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 024a7b82cc3790e675e3c20bae08bf8328876e1c0ce2dc5ff8b1f2db8fb21c8c
MD5 1a406f1d24cf409d86012c0728b3b042
BLAKE2b-256 a43d82d77493b7ffa9bb7ae27b7d1fe9ed13ba54932f5abcbb2412258990642a

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 0f1c679ad1c3740b8e6c4af6a96a10334ec2d879a0bd4fdd8954e6a79d04ae69
MD5 3567806479ca706f71800a0a7e9833fc
BLAKE2b-256 8e9d3683fbcbb3e876df6402ccfc8531616cab74be200ccd18224b0740f05340

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7de403ccd060eae7fb3eaedc62bc69fbfab56e4532955d17c43ec4f5a07d4c7b
MD5 386388246ebd1458449e6595c98a77c4
BLAKE2b-256 b99012c7f10b02bc8fd4adb44159b7458e284c95928139cca8fea8e08fea14e8

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73a8aca1739e39be6db328b641f6cb611160fc74c8103fb6de1b34ce47c99bfb
MD5 ee94841a07e555ffc85d41bb6672e7f0
BLAKE2b-256 fcc12ecfe8f8737b84398091ec609af4d3e3fa9f42660071fa4bc69076ddb7d7

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp38-none-win_amd64.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 2d68ffcc18982d5119dc049d9ec8d7e816bba0b8fef2b9ab666f0572a5400242
MD5 de4d2a1f2b3ced8a3f2e0a0262eac1fc
BLAKE2b-256 bd3a16ecb4cda7a825defc662769805c0e0544b1b3afdf170f6a5113aa769664

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp38-none-win32.whl.

File metadata

  • Download URL: tsfx-0.1.3-cp38-none-win32.whl
  • Upload date:
  • Size: 10.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for tsfx-0.1.3-cp38-none-win32.whl
Algorithm Hash digest
SHA256 35b170547eb91e561d01a2c82d95d6a407e9f4956952bdaf28b0550637f4df09
MD5 d3d2534919db7f5b5ff5c4fd8f2f5c4c
BLAKE2b-256 755027071bf0e66a4e7cc9ffcc3795ede8586dc0d3fa2c692d3a9b36e012005d

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5ec3524c5acc69b050113a15dd4591074849252ec51371c967145b85108e575f
MD5 acb4528a42f56b988f4d5268c49cda6d
BLAKE2b-256 77a2296de0b6f48a3ea56e417f89c51e2a756e0f87486b590cc6d259d891163d

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 73200e06be82e3318576706189ef63dffea57df7c366af7061e8ff2b1afb9c78
MD5 d63d603485c513002860230cebdb3ed1
BLAKE2b-256 6462f496f2a4512f2614cb430e5a2960de30b31e640a6244300552bd205a35cc

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 553daee301af9ebb1bdbb6b434db571828cbdb4f06ba815f5d411f9c7f08eefe
MD5 8065f04b7ea5df8f34771f8405d5c302
BLAKE2b-256 b7b9d260cc9e999184a9226dceb7dea5df2932659f0ddec5ad82238e96669596

See more details on using hashes here.

File details

Details for the file tsfx-0.1.3-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for tsfx-0.1.3-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2f7359ed763d44d5a758151fdc5bbcb51c45bbd57a0d9fca72dd828e1e86f422
MD5 5926d34a1c32692853481ca2c617f7b5
BLAKE2b-256 d9f4e104a274c90fd4eb21caa4b228be8e855378d83de099cdab7b53ecb18a4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page