Skip to main content

A python package for time series forecasting with scikit-learn estimators.

Project description

tspiral

A python package for time series forecasting with scikit-learn estimators.

tspiral is not a library that works as a wrapper for other tools and methods for time series forecasting. tspiral directly provides scikit-learn estimators for time series forecasting. It leverages the benefit of using scikit-learn syntax and components to easily access the open source ecosystem built on top of the scikit-learn community. It easily maps a complex time series forecasting problems into a tabular supervised regression task, solving it with a standard approach.

Overview

tspiral provides 4 optimized forecasting techniques:

  • Recursive Forecasting

Lagged target features are combined with exogenous regressors (if provided) and lagged exogenous features (if specified). A scikit-learn compatible regressor is fitted on the whole merged data. The fitted estimator is called iteratively to predict multiple steps ahead.

recursive-standard

Which in a compact way we can summarize in:

recursive-compact

  • Direct Forecasting

A scikit-learn compatible regressor is fitted on the lagged data for each time step to forecast.

direct

  • Stacking Forecasting

Multiple recursive time series forecasters are fitted and combined on the final portion of the training data with a meta-learner.

stacked

  • Rectified Forecasting

Multiple recursive time series forecasters are fitted on different sliding window training bunches. Forecasts are adjusted and combined fitting a meta-learner for each forecasting step.

rectify

Multivariate time series forecasting is natively supported for all the forecasting methods available.

Installation

pip install --upgrade tspiral

The module depends only on NumPy and Scikit-Learn (>=0.24.2). Python 3.6 or above is supported.

Usage

  • Recursive Forecasting
import numpy as np
from sklearn.linear_model import Ridge
from tsprial.forecasting import ForecastingCascade
timesteps = 400
e = np.random.normal(0,1, (timesteps,))
y = 2*np.sin(np.arange(timesteps)*(2*np.pi/24))+e
model = ForecastingCascade(
    Ridge(),
    lags=range(1,24+1),
    use_exog=False,
    accept_nan=False
)
model.fit(np.arange(len(y)), y)
forecasts = model.predict(np.arange(24*3))
  • Direct Forecasting
import numpy as np
from sklearn.linear_model import Ridge
from tsprial.forecasting import ForecastingChain
timesteps = 400
e = np.random.normal(0,1, (timesteps,))
y = 2*np.sin(np.arange(timesteps)*(2*np.pi/24))+e
model = ForecastingChain(
    Ridge(),
    n_estimators=24,
    lags=range(1,24+1),
    use_exog=False,
    accept_nan=False
)
model.fit(np.arange(len(y)), y)
forecasts = model.predict(np.arange(24*3))
  • Stacking Forecasting
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.tree import DecisionTreeRegressor
from tsprial.forecasting import ForecastingStacked
timesteps = 400
e = np.random.normal(0,1, (timesteps,))
y = 2*np.sin(np.arange(timesteps)*(2*np.pi/24))+e
model = ForecastingStacked(
    [Ridge(), DecisionTreeRegressor()],
    test_size=24*3,
    lags=range(1,24+1),
    use_exog=False
)
model.fit(np.arange(len(y)), y)
forecasts = model.predict(np.arange(24*3))
  • Rectified Forecasting
import numpy as np
from sklearn.linear_model import Ridge
from tsprial.forecasting import ForecastingRectified
timesteps = 400
e = np.random.normal(0,1, (timesteps,))
y = 2*np.sin(np.arange(timesteps)*(2*np.pi/24))+e
model = ForecastingRectified(
    Ridge(),
    n_estimators=200,
    test_size=24*3,
    lags=range(1,24+1),
    use_exog=False
)
model.fit(np.arange(len(y)), y)
forecasts = model.predict(np.arange(24*3))

More examples in the notebooks folder.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tspiral-0.1.2.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

tspiral-0.1.2-py3-none-any.whl (12.5 kB view details)

Uploaded Python 3

File details

Details for the file tspiral-0.1.2.tar.gz.

File metadata

  • Download URL: tspiral-0.1.2.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for tspiral-0.1.2.tar.gz
Algorithm Hash digest
SHA256 2af3ac6e912421f48722ed786cae23927e32adb05991d5dc35b9b33d44cbed89
MD5 68096fde2e71b482f07e3e187da9ec11
BLAKE2b-256 4a3e9ad31b7c4682f95056b700ee27da751cca5c028fcfc421b49f415a34b36f

See more details on using hashes here.

File details

Details for the file tspiral-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: tspiral-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 12.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for tspiral-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 125c5769680c4f1143ff1e3545d3820742af5a2c99b1f5d2959561d81cc80284
MD5 509303cf851d78d0636cca82da2c9854
BLAKE2b-256 099edd8586216b539589133a89acf67cc03528886d72e9fd39a68799930ca8e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page