Skip to main content

Python Bindings for the Unified Communication X library (UCX)

Project description

UCXX

UCXX is an object-oriented C++ interface for UCX, with native support for Python bindings.

Building

Environment setup

Before starting it is necessary to have the necessary dependencies installed. The simplest way to get started is to installed Miniconda and then to create and activate an environment with the provided development file:

$ conda env create -n ucxx -f conda/environments/all_cuda-118_arch-x86_64.yaml
$ conda activate ucxx

Faster conda dependency resolution

The procedure aforementioned should complete without issues, but it may be slower than necessary. One alternative to speed up dependency resolution is to install mamba before creating the new environment. After installing Miniconda, mamba can be installed with:

$ conda install -c conda-forge mamba

After that, one can proceed as before, but simply replacing conda with mamba in the environment creation command:

$ mamba env create -n ucxx -f conda/environments/all_cuda-118_arch-x86_64.yaml
$ conda activate ucxx

Convenience Script

For convenience, we provide the ./build.sh script. By default, it will build and install both C++ and Python libraries. For a detailed description on available options please check ./build.sh --help.

Building C++ and Python libraries manually is also possible, see instructions on building C++ and Python.

Additionally, there is a ./build_and_run.sh script that will call ./build.sh to build everything as well as running C++ and Python tests and a few benchmarks. Similarly, details on existing options can be queried with ./build_and_run.sh.

C++

To build and install C++ library to ${CONDA_PREFIX}, with both Python and RMM support, as well as building all tests run:

mkdir cpp/build
cd cpp/build
cmake .. -DCMAKE_INSTALL_PREFIX=${CONDA_PREFIX} \
      -DBUILD_TESTS=ON \
      -DCMAKE_BUILD_TYPE=Release \
      -DUCXX_ENABLE_PYTHON=ON \
      -DUCXX_ENABLE_RMM=ON
make -j install

Python

cd python
python setup.py install

Running benchmarks

C++

Currently there is only one C++ benchmark with few options. It can be found under cpp/build/benchmarks/ucxx_perftest and for a full list of options --help argument can be used.

The benchmark is composed of two processes: a server and a client. The server must not specify an IP address or hostname and will bind to all available interfaces, whereas the client must specify the IP address or hostname where the server can be reached.

Below is an example of running a server first, followed by the client connecting to the server on the localhost (127.0.0.1). Both processes specify a list of parameters, which are the message size in bytes (-s 8388608), that allocations should be reused (-r), the number of iterations to perform (-n 10) and the progress mode (-m polling).

$ UCX_TCP_CM_REUSEADDR=y ./benchmarks/ucxx_perftest -s 800000000 -r -n 10 -m polling &
$ ./benchmarks/ucxx_perftest -s 800000000 -r -n 10 -m polling 127.0.0.1

It is recommended to use UCX_TCP_CM_REUSEADDR=y when binding to interfaces with TCP support to prevent waiting for the process' TIME_WAIT state to complete, which often takes 60 seconds after the server has terminated.

Python

Benchmarks are available for both the Python "core" (synchronous) API and the "high-level" (asynchronous) API.

Synchronous

# Thread progress without delayed notification NumPy transfer, 100 iterations
# of single buffer with 100 bytes
python -m ucxx.benchmarks.send_recv \
    --backend ucxx-core \
    --object_type numpy \
    --n-iter 100 \
    --n-bytes 100

# Blocking progress without delayed notification RMM transfer between GPUs 0
# and 3, 100 iterations of 2 buffers (using multi-buffer interface) each with
# 1 MiB
python -m ucxx.benchmarks.send_recv \
    --backend ucxx-core \
    --object_type rmm \
    --server-dev 0 \
    --client-dev 3 \
    --n-iter 100 \
    --n-bytes 100 \
    --progress-mode blocking

Asynchronous

# NumPy transfer, 100 iterations of 8 buffers (using multi-buffer interface)
# each with 100 bytes
python -m ucxx.benchmarks.send_recv \
    --backend ucxx-async \
    --object_type numpy \
    --n-iter 100 \
    --n-bytes 100 \
    --n-buffers 8

# RMM transfer between GPUs 0 and 3, 100 iterations of 2 buffers (using
# multi-buffer interface) each with 1 MiB
python -m ucxx.benchmarks.send_recv \
    --backend ucxx-async \
    --object_type rmm \
    --server-dev 0 \
    --client-dev 3 \
    --n-iter 100 \
    --n-bytes 1MiB \
    --n-buffers 2

# Polling progress mode without delayed notification NumPy transfer,
# 100 iterations of single buffer with 1 MiB
UCXPY_ENABLE_DELAYED_SUBMISSION=0 \
    python -m ucxx.benchmarks.send_recv \
    --backend ucxx-async \
    --object_type numpy \
    --n-iter 100 \
    --n-bytes 1MiB \
    --progress-mode polling

Logging

Logging is independently available for both C++ and Python APIs. Since the Python interface uses the C++ backend, C++ logging can be enabled when running Python code as well.

C++

The C++ interface reuses the UCX logger and provides the same log levels and can be enabled via the UCXX_LOG_LEVEL environment variable. However, it will not enable UCX logging, one must still set UCX_LOG_LEVEL for UCX logging. A few examples are below:

# Request trace log level
UCXX_LOG_LEVEL=TRACE_REQ

# Debug log level
UCXX_LOG_LEVEL=DEBUG

Python

The UCXX Python interface uses the logging library included in Python. The only used levels currently are INFO and DEBUG, and can be enabled via the UCXPY_LOG_LEVEL environment variable. A few examples are below:

# Enable Python info log level
UCXPY_LOG_LEVEL=INFO

# Enable Python debug log level, UCXX request trace log level and UCX data log level
UCXPY_LOG_LEVEL=DEBUG UCXX_LOG_LEVEL=TRACE_REQ UCX_LOG_LEVEL=DATA

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ucxx_cu11-0.39.0.tar.gz (3.0 kB view details)

Uploaded Source

File details

Details for the file ucxx_cu11-0.39.0.tar.gz.

File metadata

  • Download URL: ucxx_cu11-0.39.0.tar.gz
  • Upload date:
  • Size: 3.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for ucxx_cu11-0.39.0.tar.gz
Algorithm Hash digest
SHA256 992b2ff49948c085d7ee7b736a31ab4efc4b512ddc28b0b4b259db51add397fb
MD5 98afc08dd3f7d5882d625cafd3c2db72
BLAKE2b-256 75b4f961c9deaccd029023480554e496514848e6a50dee190fe002aa3085a903

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page