Skip to main content

Bindings to MorphoDiTa library

Project description

ufal.morphodita

The ufal.morphodita is a Python binding to MorphoDiTa library <http://ufal.mff.cuni.cz/morphodita>.

The bindings is a straightforward conversion of the C++ bindings API. In Python 2, strings can be both unicode and UTF-8 encoded str, and the library always produces unicode. In Python 3, strings must be only str.

Wrapped C++ API

The C++ API being wrapped follows. For a API reference of the original C++ API, see <http://ufal.mff.cuni.cz/morphodita/api-reference>.

Helper Structures
-----------------

  typedef vector<int> Indices;

  typedef vector<string> Forms;

  struct TaggedForm {
    string form;
    string tag;
  };
  typedef vector<TaggedForm> TaggedForms;

  struct TaggedLemma {
    string lemma;
    string tag;
  };
  typedef vector<TaggedLemma> TaggedLemmas;
  typedef vector<TaggedLemmas> Analyses;

  struct TaggedLemmaForms {
    string lemma;
    TaggedForms forms;
  };
  typedef vector<TaggedLemmaForms> TaggedLemmasForms;

  struct TokenRange {
    size_t start;
    size_t length;
  };
  typedef vector<TokenRange> TokenRanges;

  struct DerivatedLemma {
    std::string lemma;
  };
  typedef vector<DerivatedLemma> DerivatedLemmas;


Main Classes
------------

  class Version {
   public:
    unsigned major;
    unsigned minor;
    unsigned patch;
    string prerelease;

    static Version current();
  };

  class Tokenizer {
   public:
    virtual void setText(const char* text);
    virtual bool nextSentence(Forms* forms, TokenRanges* tokens);

    static Tokenizer* newVerticalTokenizer();
    static Tokenizer* newCzechTokenizer();
    static Tokenizer* newEnglishTokenizer();
    static Tokenizer* newGenericTokenizer();
  };

  class Derivator {
   public:
    virtual bool parent(const char* lemma, DerivatedLemma& parent) const;
    virtual bool children(const char* lemma, DerivatedLemmas& children) const;
  };

  class DerivationFormatter {
   public:
    virtual string formatDerivation(const char* lemma) const;

    static DerivationFormatter* newNoneDerivationFormatter();
    static DerivationFormatter* newRootDerivationFormatter(const Derivator* derivator);
    static DerivationFormatter* newPathDerivationFormatter(const Derivator* derivator);
    static DerivationFormatter* newTreeDerivationFormatter(const Derivator* derivator);
    static DerivationFormatter* newDerivationFormatter(const char* name, const Derivator* derivator);
  };

  class Morpho {
   public:
    static Morpho* load(const char* fname);

    enum { NO_GUESSER = 0, GUESSER = 1 };

    virtual int analyze(const char* form, int guesser, TaggedLemmas& lemmas) const;
    virtual int generate(const char* lemma, const char* tag_wildcard, int guesser, TaggedLemmasForms& forms) const;
    virtual string rawLemma(const char* lemma) const;
    virtual string lemmaId(const char* lemma) const;
    virtual string rawForm(const char* form) const;

    virtual Tokenizer* newTokenizer() const;

    virtual Derivator* getDerivator() const;
  };

  class Tagger {
   public:
    static Tagger* load(const char* fname);

    virtual const Morpho* getMorpho() const;

    virtual void tag(const Forms& forms, TaggedLemmas& tags, int guesser = -1) const;

    virtual void tagAnalyzed(const Forms& forms, const Analyses& analyses, Indices& tags) const;

    Tokenizer* newTokenizer() const;
  };

  class TagsetConverter {
   public:
    static TagsetConverter* newIdentityConverter();
    static TagsetConverter* newPdtToConll2009Converter();
    static TagsetConverter* newStripLemmaCommentConverter(const Morpho& morpho);
    static TagsetConverter* newStripLemmaIdConverter(const Morpho& morpho);

    virtual void convert(TaggedLemma& lemma) const;
    virtual void convertAnalyzed(TaggedLemmas& lemmas) const;
    virtual void convertGenerated(TaggedLemmasForms& forms) const;
  };

Examples

run_morpho_cli

Simple example performing morphological analysis and generation:

import sys

from ufal.morphodita import *

# In Python2, wrap sys.stdin and sys.stdout to work with unicode.
if sys.version_info[0] < 3:
  import codecs
  import locale
  encoding = locale.getpreferredencoding()
  sys.stdin = codecs.getreader(encoding)(sys.stdin)
  sys.stdout = codecs.getwriter(encoding)(sys.stdout)

if len(sys.argv) < 2:
  sys.stderr.write('Usage: %s dict_file\n' % sys.argv[0])
  sys.exit(1)

sys.stderr.write('Loading dictionary: ')
morpho = Morpho.load(sys.argv[1])
if not morpho:
  sys.stderr.write("Cannot load dictionary from file '%s'\n" % sys.argv[1])
  sys.exit(1)
sys.stderr.write('done\n')

lemmas = TaggedLemmas()
lemmas_forms = TaggedLemmasForms()
line = sys.stdin.readline()
while line:
  tokens = line.rstrip('\r\n').split('\t')
  if len(tokens) == 1: # analyze
    result = morpho.analyze(tokens[0], morpho.GUESSER, lemmas)

    guesser = "Guesser " if result == morpho.GUESSER else ""
    for lemma in lemmas:
      sys.stdout.write('%sLemma: %s %s\n' % (guesser, lemma.lemma, lemma.tag))
  elif len(tokens) == 2: # generate
    result = morpho.generate(tokens[0], tokens[1], morpho.GUESSER, lemmas_forms)

    guesser = "Guesser " if result == morpho.GUESSER else ""
    for lemma_forms in lemmas_forms:
      sys.stdout.write('%sLemma: %s\n' % (guesser, lemma_forms.lemma))
      for form in lemma_forms.forms:
        sys.stdout.write('  %s %s\n' % (form.form, form.tag))

  line = sys.stdin.readline()

run_tagger

Simple example performing tokenization and PoS tagging:

import sys

from ufal.morphodita import *

def encode_entities(text):
  return text.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;').replace('"', '&quot;')

# In Python2, wrap sys.stdin and sys.stdout to work with unicode.
if sys.version_info[0] < 3:
  import codecs
  import locale
  encoding = locale.getpreferredencoding()
  sys.stdin = codecs.getreader(encoding)(sys.stdin)
  sys.stdout = codecs.getwriter(encoding)(sys.stdout)

if len(sys.argv) == 1:
  sys.stderr.write('Usage: %s tagger_file\n' % sys.argv[0])
  sys.exit(1)

sys.stderr.write('Loading tagger: ')
tagger = Tagger.load(sys.argv[1])
if not tagger:
  sys.stderr.write("Cannot load tagger from file '%s'\n" % sys.argv[1])
  sys.exit(1)
sys.stderr.write('done\n')

forms = Forms()
lemmas = TaggedLemmas()
tokens = TokenRanges()
tokenizer = tagger.newTokenizer()
if tokenizer is None:
  sys.stderr.write("No tokenizer is defined for the supplied model!")
  sys.exit(1)

not_eof = True
while not_eof:
  text = ''

  # Read block
  while True:
    line = sys.stdin.readline()
    not_eof = bool(line)
    if not not_eof: break
    line = line.rstrip('\r\n')
    text += line
    text += '\n';
    if not line: break



  # Tag
  tokenizer.setText(text)
  t = 0
  while tokenizer.nextSentence(forms, tokens):
    tagger.tag(forms, lemmas)

    for i in range(len(lemmas)):
      lemma = lemmas[i]
      token = tokens[i]
      sys.stdout.write('%s%s<token lemma="%s" tag="%s">%s</token>%s' % (
        encode_entities(text[t : token.start]),
        "<sentence>" if i == 0 else "",
        encode_entities(lemma.lemma),
        encode_entities(lemma.tag),
        encode_entities(text[token.start : token.start + token.length]),
        "</sentence>" if i + 1 == len(lemmas) else "",
      ))
      t = token.start + token.length
  sys.stdout.write(encode_entities(text[t : ]))

AUTHORS

Milan Straka <straka@ufal.mff.cuni.cz>

Jana Straková <strakova@ufal.mff.cuni.cz>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ufal.morphodita-1.9.2.1.tar.gz (182.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page