Skip to main content

This package creates upnumber (universal precisional number) which can create flaoting and fractional numbers of bases 2, 8, 10, 16, 32, and 64. That is why, they are called universal numbers. This number system can create accurate number with any level of precision set by the user. There are 42 standard math functions for scientific calculations. So, this package is named as upmath (universal precision mathematics).

Project description

upmath-2.0.0 (universal precision mathematics)

Description: This python package contains a number class that supports high precision calculation and various number-bases like 2, 8, 10, 16, 32 and 64. Numbers are correct to the precision level (significant digits) set by the user. Numbers of different bases are equivalent and interconvertible. Converting a number to a higher base saves memory space and reduces load on network traffic when a number is sent from one machine to another over the computer network.

Both the integers and floating point numbers are supported by all the numbers of mentioned bases. Since these numbers support binary, octal, denary, hexadecimal, base-32 and base-64 numbers equivalently, that's why, they are called 'universal' precisional numbers.

All the standard mathematical functions are rewritten to support the high precision calculations. Mathematical operators are also redefined accordingly. That's why, this package is called universal precision mathematics (upmath).

The latest package (version 2.0.0) is more faster and efficient.

Features of upmath-2.0.0

  1. Very fast and accurate calculations upto the set precision
  2. Floating point binary, octal, hexadecimal, base32 and base64 numbers are supported
  3. Mixed fractional numbers are also supported
  4. Supported Math Operators:
   +(add), -(subtract), *(multiply), /(division), //(floor division), %(modulus 
   or remainder operation), **(power operation), ~(invertion), ==(equal to),
   !=(not equal to), >(greater than), >=(greater than or equal to), <(less than), 
   <(less than or equal to), +(unart positive), -(unary negative), +=(add and assign), 
   -=(subtract and assign), *=(multiply and assign), /=(divide and assign), 
   //=(floor division and assign), %=(find remainder and assign), **=(find power, 
   then assign) 
  1. Recurring decimals can be converted to fractions quickly and automatically
  2. Mathematical Constants: E, PI, INF, ZERO, ONE and UNDEFINED
  3. Common Mathematical Functions:
		fact(n), nCr(n,r), nPr(n,r), ln(x,prec), logE(x,y), lg(x,prec), log10(x,prec), 
		exp(x,prec), power(x,y,prec), sqrt(x,prec)
  1. Trigonometric Functions:
    sin(x,prec), cos(x,prec), tan(x,prec), cot(x,prec), sec(x,prec), csc(x,prec),
    cosec(x,prec), asin(x,prec), acos(x,prec), atan(x,prec), acot(x,prec), asec(x,prec), 
	acsc(x,prec), acosec(x,prec)
  1. Hyperbolic Functions:
        sinh(x,prec), cosh(x,prec), tanh(x,prec), coth(x,prec), sech(x,prec),
        csch(x,prec), cosech(x,prec), asinh(x,prec), acosh(x,prec), atanh(x,prec), 
		acoth(x,prec), asech(x,prec), acsch(x,prec), acosech(x,prec)
  1. Other Standard Functions:
gamma(x,prec), beta(x,y,prec), erf(x,prec), erfc(x,prec)```
  1. Precision calculation of E and PI:
getE(prec), getPI(prec)
  1. Numbers of Number Theory:
eulerNumber(n), bernoilliNumber(n), tangentNumber(n)
  1. Methods and properties of upnumber (universal precision number)
>>>
>>> a=lib.Number('11001.101',base=2)
>>> a;print(a)
b10:25.625
b02:11001.101
>>> dir(a)
['_Number__base', '_Number__base10_prec', '_Number__is_accurate', '_Number__is_numeric', 
'_Number__max_prec', '_Number__modify', '_Number__normal_prec', '_Number__num', 
'_Number__parseddict', '_Number__prec', '_Number__ultra_modify', '__abs__', '__add__', 
'__ceil__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', 
'__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', 
'__getstate__', '__gt__', '__hash__', '__iadd__', '__ifloordiv__', '__imod__', '__imul__', 
'__init__', '__init_subclass__', '__int__', '__invert__', '__ipow__', '__isub__', 
'__itruediv__', '__le__', '__lt__', '__mod__', '__module__', '__mul__', '__ne__', 
'__neg__', '__new__', '__pos__', '__pow__', '__radd__', '__reduce__', '__reduce_ex__', 
'__repr__', '__req__', '__rfloordiv__', '__rge__', '__rgt__', '__rle__', '__rlt__', 
'__rmod__', '__rmul__', '__rne__', '__round__', '__rpow__', '__rsub__', '__rtruediv__', 
'__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', 
'__weakref__', 'addBase64Form', 'ceil', 'copy', 'createNewNumber', 'denaryFPtoFRMode', 
'displayInFPMode', 'floor', 'forceResetPrecision', 'getAccuracy', 'getBase', 
'getBase10Part', 'getBase10Precision', 'getBase10frPart', 'getBase32Form', 'getBase64Form', 
'getBinaryForm', 'getDenaryForm', 'getDenominator', 'getDict', 'getExponent', 
'getFloatingPart', 'getHexadecimalForm', 'getInputMode', 'getIntegerPart', 
'getMaxPrecision', 'getNormalPrecision', 'getNormalizedForm', 'getNormalizedPart', 
'getNumerator', 'getOctalForm', 'getOriginal', 'getPrecision', 'getScientificForm', 
'getSign', 'isAbs', 'isAccurate', 'isBase32Number', 'isBase64Number', 'isBinary', 'isDenary', 
'isFloat', 'isFractional', 'isHexadecimal', 'isInteger', 'isNegative', 'isNumeric', 
'isOctal', 'isPositive', 'isPrime', 'isRecurring', 'limitFloatingDigits', 'modify', 
'setMaxPrecision', 'toDenaryInteger', 'ultraModify']
>>>


Examples

Numeric digits of UPNumber and Random number generation

>>> 
>>> import upmath
>>> upmath.version
'2.0.0'
>>> import upmath.lib as lib
>>>
>>> lib.base2digits
('0', '1')
>>> lib.base8digits
('0', '1', '2', '3', '4', '5', '6', '7')
>>> lib.base10digits
('0', '1', '2', '3', '4', '5', '6', '7', '8', '9')
>>> lib.base16digits
('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f')
>>> lib.base32digits
('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v')
>>> lib.base64digits
('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 
'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '!', '@')
>>>
>>> lib.digitIndex('m',base=64)
22
>>> lib.digitChar(22,base=64)
'm'
>>>
>>> print(lib.randomInteger(length=40,base=2))
b02:1011100010110100111001111100100001100001
>>> print(lib.randomInteger(length=40,base=8))
b08:1443453462141027362365304051756402002661
>>> print(lib.randomInteger(length=40,base=10))
b10:4308311625313438552071180617956698018059
>>> print(lib.randomInteger(length=40,base=16))
b16:5bb28ee5df6640da35cc98d47b62d9536f2ac341
>>> print(lib.randomInteger(length=40,base=32))
b32:c82366mes4lpg58klcvoij0nrrihmala55qglqrf
>>> print(lib.randomInteger(length=40,base=64))
b64:fgX3IFNOXzE1c2cSn9Tw5ioIReXncSnueRQbgM4Z
>>>
>>> print(lib.randomFloat(length=50,base=2))
b02:1001011110111.1010001101101111100001111111000110011
>>> print(lib.randomFloat(length=50,base=8))
b08:635245411407012165217532161135752452566051445237.17
>>> print(lib.randomFloat(length=50,base=10))
b10:6555.7875474885111908514201013999991057580008396989
>>> print(lib.randomFloat(length=50,base=16))
b16:6b2ee2921bf8a9b576.b084f6b729bb4339d66479b08cec487d
>>> print(lib.randomFloat(length=50,base=32))
b32:b2k81.87vpfgbr5dsvks06d8lppc5dt28iitnmiiu8lmmh94a1e
>>> print(lib.randomFloat(length=50,base=64))
b64:lstJQpE2LYKkpho!SEwZtH.QlavtOy1DsF85Nyy94DwPffdbCak
>>>

Universal precision numbers (lib.Number) are accurate to the given precision. Default precision is 36.

>>> 
>>> import upmath.lib as lib
>>>
>>> dir(lib)
['E', 'INF', 'Number', 'ONE', 'PI', 'UND', 'UNDEFINED', 'ZERO', '__builtins__', '__cached__', 
'__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '__version__', 
'acos', 'acosec', 'acosech', 'acosh', 'acot', 'acoth', 'acsc', 'acsch', 'asec', 'asech', 
'asin', 'asinh', 'atan', 'atanh', 'base10digits', 'base16digits', 'base2digits', 
'base32digits', 'base64digits', 'base8digits', 'bernoulliNumber', 'beta', 'cos', 'cosec', 
'cosech', 'cosh', 'cot', 'coth', 'csc', 'csch', 'dataType', 'digitChar', 'digitIndex', 
'digits', 'e', 'erf', 'erfc', 'eulerNumber', 'exp', 'fact', 'gamma', 'getE', 'getPI', 
'inv', 'lg', 'ln', 'log10', 'logE', 'mypi', 'nCr', 'nPr', 'pe', 'pi', 'power', 'psmf', 
'randomFloat', 'randomInteger', 'randomNumberString', 'randomString', 'sec', 'sech', 'sin', 
'sinh', 'sqrt', 'tan', 'tangentNumber', 'tanh', 'upn', 'version']
>>>
>>>
>>> lib.e
b10:2.718281828459045235360287471352662497
>>>
>>> lib.getE(prec=300)
b10:2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457
13821785251664274274663919320030599218174135966290435729003342952605956307381323286279434
90763233829880753195251019011573834187930702154089149934884167509244761460668082264800168
47741185374234544243710753907774499207
>>>
>>> lib.PI
b10:3.141592653589793238462643383279502884
>>>
>>> lib.getPI(prec=300)
b10:3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862
80348253421170679821480865132823066470938446095505822317253594081284811174502841027019385
21105559644622948954930381964428810975665933446128475648233786783165271201909145648566923
46034861045432664821339360726024914127
>>>
>>> a=lib.getE(prec=300)
>>> type(a)
<class 'upmath.src.upnumber.Number'>
>>> a.__sizeof__()
24
>>>
>>> b=lib.getPI(prec=300)
>>> type(b)
<class 'upmath.src.upnumber.Number'>
>>> b.__sizeof__()
24
>>>
**So, an upnumber carrying 300 digits requires only 24B memory space**

Mathematical operations are able to create the numbers correct to the given precision.

>>> import upmath.lib as lib
>>> a=lib.Number('998001',prec=500)
>>>
>>> lib.inv(a)
b10:0.00000100200300400500600700800901001101201301401501601701801902002102202302402502602
70280290300310320330340350360370380390400410420430440450460470480490500510520530540550560
57058059060061062063064065066067068069070071072073074075076077078079080081082083084085086
08708808909009109209309409509609709809910010110210310410510610710810911011111211311411511
61171181191201211221231241251261271281291301311321331341351361371381391401411421431441451
4614714814915015115215315415515615715815916016116216316416516616
>>>

All numbers are returned and manipulated in string format. It can handle integer and floating point numbers of any base from 2,8,10,16,32,64. This package can process any number from ultra small to ultra large level.

>>> import upmath.lib as lib
>>> a=lib.Number('-1.6e-2020')
>>> b=lib.Number('4.85e+2020')
>>> print(a)
b10:-1.6e-2020
>>> print(b)
b10:4.85e+2020
>>>
>>> a+1
b10:0.9999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
984
>>>
>>> b+1
b10:4850000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000001
>>>

The central number system is binary and denary. Numbers of bases 8,16,32 and 64 are converted efficiently through binary. Arithmetic and other mathematical operations are performed by denary (base10) operations.

>>> 
>>> import upmath.lib as lib
>>> a=lib.Number('hello.world',64)
>>>
>>> a;print(a)
b10:288970072.505963635630905628204345703125
b64:hello.world
>>>
>>> a.getDenaryForm()
'b10:288970072.505963635630905628204345703125'
>>> 
>>> a.getBinaryForm()
'b02:10001001110010101010101011000.100000011000011011010101001101'
>>>
>>> a.getOctalForm()
'b08:2116252530.4030332515'
>>>
>>> a.getHexadecimalForm()
'b16:11395558.8186d534'
>>>
>>> a.getBase32Form()
'b32:8jilao.g63dad'
>>> 

Base Number System Example Digits
Base=2 Binary b02:-11001.011p600 0,1
Base=8 Octal b08:-4572.0273p-600 0-7
Base=10 Denary b10:-9078.0412p40 0-9
Base=16 Hexadecimal b16:-f04d.32abp70 0-9a-fA-F
Base=32 DuoTrigesimal b32:-vV0o.25f9p+147 0-9a-vA-V
Base=64 Base-64 b64:-zXo0.a4Btp-250 0-9a-zA-Z!@

Number input modes:'fp' and 'fr'

fp' (floating point) mode means numbers with floating digits.
    Like:b02:-11110001.11p-10,b10:92.45e33
'fr' (fractional) mode which displays number as mixed or proper fraction.
    Like:b02:-11110001 11/100p+17, b10:92 9/20e+23.
Difference: 'fp' numbers contain '.', but 'fr' numbers have '/'.

Valid Input Format:

(fp)11110.101,'11110.101p+34','11110.101p34','11110.101p-23','-0.1101p-45'
(fr) '-1101 11/1101', "-1101 11/1101p+7", "-1101 11/1101p7", '-1101 11/1101p-17'

Default base is 10. If base is not given in the number definition, it automatically assumes 10.

>>>
>>> import upmath.lib as lib
>>> a=lib.Number('24 5/7p-5')
>>> a;print(a)
b10:0.0002471428571428571428571428571428571428571
b10:24 5/7e-5
>>>
>>> a+1
b10:1.0002471428571428571428571428571428571428571
>>> a*1
b10:0.0002471428571428571428571428571428571428571
>>> 

UPNumbers are stored internally as a dictionary. For example,

>>> import upmath.lib as lib
>>> a=lib.Number('15.27')
>>>
>>> a.getDict()
{'base': 10, 'input_mode': 'fp', 'sign': '+', 'ipart': '15', 'fpart': '27', 'exp': 0, 
'prec': 4, 'is_accurate': True, 'normalized': {'sign': '+', 'ipart': '15', 'fpart': '27', 
'is_accurate': True}, 'is_integer': False, 'is_float': True, 'normal_prec': 4, 
'max_prec': 36, 'base10': {'sign': '+', 'ipart': '15', 'fpart': '27', 'is_accurate': True}, 
'base10_prec': 36}
>>>
>>>
>>> b=lib.Number('111001.11011',base=2)
>>> b.getDict()
{'base': 2, 'input_mode': 'fp', 'sign': '+', 'ipart': '111001', 'fpart': '11011', 'exp': 0, 
'prec': 11, 'is_accurate': True, 'normalized': {'sign': '+', 'ipart': '111001', 
'fpart': '11011', 'is_accurate': True}, 'is_integer': False, 'is_float': True, 
'normal_prec': 11, 'max_prec': 36, 'base10': {'sign': '+', 'ipart': '57', 'fpart': '84375', 
'is_accurate': True}, 'base10_prec': 7}
>>>
>>> c=lib.Number('45 21/33',base=8)
>>> c;print(c)
b10:37.62962962962962962962962962962962768943353750619202951397777635888803465791241364
9683003313839435577392578125
b08:45 21/33
>>> c.getDict()
{'base': 8, 'input_mode': 'fr', 'sign': '+', 'ipart': '45', 'numerator': '21', 'deno': '33', 
'exp': 0, 'prec': 6, 'is_accurate': True, 'base10fr': {'sign': '+', 'ipart': '37', 
'numerator': '17', 'deno': '27', 'is_accurate': True}, 'max_prec': 38, 
'normalized': {'sign': '+', 'ipart': '45', 'fpart': '502275502275502275502275502275502275', 
'is_accurate': False}, 'is_integer': False, 'is_float': True, 'normal_prec': 38, 
'base10': {'sign': '+', 'ipart': '37', 'fpart': '629629629629629629629629629629627689433537
506192029513977776358888034657912413649683003313839435577392578125', 'is_accurate': False}, 
'base10_prec': 110}
>>>

Builtin Functions: int(), float(), round() on the UPNumber (universal precision number)

>>>
>>> import upmath.lib as lib
>>> a=lib.Number('111001.11011',base=2)
>>> a;print(a)
b10:57.84375
b02:111001.11011
>>> b=lib.Number('111001',base=2)
>>> b;print(b)
b10:57
b02:111001
>>> int(a)
57
>>> float(b)
57.0
>>> round(a,4)
57.8438
>>> round(a,2)
57.84
>>> round(a,3)
57.844
>>>

math.floor() and math.ceil() functions on UPNumber (universal precision number)

>>>
>>> import upmath.lib as lib
>>> a=lib.Number('111001.11011',base=2)
>>> b=lib.Number('-25.7124',base=8)
>>> a;print(a)
b10:57.84375
b02:111001.11011
>>> b;print(b)
b10:-21.8955078125
b08:-25.7124
>>>
>>> import math
>>> math.ceil(a)
58
>>> math.floor(a)
57
>>> math.ceil(b)
-21
>>> math.floor(b)
-22
>>>

If a floating or fractional number is recurring, upnumber can handle it very efficiently just by setting modify or ultraModify argument 'True'. modify() method and ultraModify() method also do the same job. These methods or arguments can also convert the improper fractions to proper fraction with necessary simplifications.

>>> 
>>> import upmath.lib as lib
>>> a=lib.Number('245.20451045104510451',modify=True)
>>> print(a)
b10:245 1859/9090
>>> 
>>> a=lib.Number('245.20451045104510451')
>>> a
b10:245.20451045104510451
>>> a.modify()
>>> a;print(a)
b10:245.20451045104510451
b10:245 1859/9090
>>>
>>> b=lib.Number('245/37',modify=True)
>>> b;print(b)
b10:6.62162162162162162162162162162162162162
b10:6 23/37
>>>
>>> c=lib.Number('-30 245/35',modify=True)
>>> c;print(c)
b10:-37
b10:-37
>>>
>>> d=lib.Number('-30 245/45',modify=True)
>>> d;print(d)
b10:-35.44444444444444444444444444444444444444
b10:-35 4/9
>>> 

Arithmetic operations

Addition(+), subtraction(-), multiplication(*), division(/), floor division(//), remainder or mod operation(%), power operation(**) etc. can be done very easily.

>>> 
>>> import upmath.lib as lib
>>> a=lib.Number('12.45')     #denary number
>>> b=lib.Number('-2 3/5')    #denary number
>>> c=lib.Number('1101.11',2) #binary number
>>> d=lib.Number('2 3/5',8)   #octal number
>>> a+b
b10:9.85
>>> a+2.45
b10:14.9
>>> 10-a
b10:-2.45
>>> print(5+b)
b10:2 2/5
>>> c*2.5
b10:34.375
>>> 30/a
b10:2.409638554216867469879518072289156626506
>>> a/0
b10:<INF>
>>> b/0
b10:<-INF>
>>> 30//a
b10:2
>>> 30%a
b10:5.1
>>> lib.power(a,2.5)
b10:546.919462835080042646792227676322546
>>> a**2.5
b10:546.919462835080042646792227676322546
>>> 5**a
b10:503705338.789256548289543848618036647
>>> lib.power(b,-2.5)
b10:<UNDEFINED>
>>> b**-2.5
b10:<UNDEFINED>
>>> c**2.5
b10:701.062513233261888120374289325692407
>>> 2.5**c
b10:296261.433052663007815877972404231589
>>> lib.power(c,-2.5)
b10:0.00142640632058338821552976539808037757
>>> c**-2.5
b10:0.00142640632058338821552976539808037757
>>> 2.5**lib.Number('4.5')
b10:61.7632355501636588281033895397015339
>>> 2**lib.Number('-4.5')
b10:0.044194173824159220275052772631553065
>>> 

Logical operations

Logical operations like equal-to(==), not-equal-to(!=), greater-than(>), less-than(<), greater-than-or-equal-to(>=) and less-than-or-equal-to(<=) can be performed on universal precision number objects as simple as done with the normal numbers. 'True' or 'False' are returned.

>>> 
>>> import upmath.lib as lib
>>> a=lib.Number('-2.5')
>>> b=lib.Number('-10.1',2)
>>> c=lib.Number('ab c/d',16)
>>> d=lib.Number('f.10z',64)
>>> 
>>> a==b
True
>>> a>b
False
>>> c<d
False
>>> d>b
True
>>> a!=b
False
>>> c>a
True
>>> a>=b
True
>>> a<10
True
>>> 10>a
True
>>> 20>=c
False
>>> 20>=d
True
>>> 
>>> 

In-Place assignment operations

In-place assignment operations like +=, -=, *=, /=, //=, %= are also supported in this number system.

operator operation
+= Operands are added first, then the result is assigned to the left operand
-= Right Operand is subtracted from the left, then the result is assigned to the left operand
*= Operands are multiplied first, then the result is assigned to the left operand
**= Left operands are raised to the power of the right operand and the value is assigned to the left
/= Left operand is divided by the right one, then the result is assigned to the left operand
//= Left operand is divided by the right one, then the floor value of quotient is assigned to the left operand
%= Left operand is divided by the right one, then the remainder is assigned to the left operand
>>> 
>>> import upmath.lib as lib
>>> a=lib.Number('-2.5')
>>> b=lib.Number('10.75')
>>> c=lib.Number('13.25',8)
>>> 
>>> a+=b
>>> a
b10:8.25
>>> 
>>> a-=b
>>> a
b10:-2.5
>>> 
>>> a*=c
>>> a
b10:-28.3203125
>>> b/=c
>>> b
b10:0.9489655172413793103448275862068965517
>>> 
>>> b=lib.Number('10.75')
>>> c//=b
>>> c
b10:1
>>> c=lib.Number('13.25',8)
>>> c%=b
>>> c
b10:0.578125
>>> 

Standard mathematical operations

(Logarithmic, exponential, trigonometric, hyperbolic, gamma, beta and error functions are executed efficiently with this upnumber number system)


Inverse, factorial, logarithmic, exponential, square-root and power operations

>>> 
>>> import upmath.lib as lib
>>> a=lib.Number('-2.5')
>>> lib.inv(a)
b10:-0.4
>>> b=lib.Number('7')
>>> lib.fact(b)
b10:5040
>>> 
>>> lib.ln(a)
b10:<UNDEFINED>
>>> 
>>> a=lib.Number('3 4/7')
>>> lib.ln(a)
b10:1.27296567581288744409616592300919555
>>> lib.ln(a,prec=50)
b10:1.2729656758128874440961659230091955494141179789552
>>> 
>>> a=lib.Number('-2.5')
>>> b=lib.Number('4.75')
>>> lib.ln(b)        # logE(b)
b10:1.5581446180465498411745631889715004
>>> lib.lg(b)        #log10(b)
b10:0.676693609624866571108855686307943263
>>> 
>>> lib.exp(a)       #e^a
b10:0.0820849986238987951695286744671598078
>>> lib.exp(b)       #e^b
b10:115.584284527187658133414267136529079lib.sqrt()
>>> 
>>> lib.power(a,b)    #a^b
b10:<UNDEFINED>
>>> lib.power(b,a)    #b^a
b10:0.020336020730908522185680627421418239
>>> 
>>> lib=upn.Number('-2 1/2')
>>> b=upn.Number('4 3/4')
>>> lib.sqrt(b)
b10:<UNDEFINED>
>>> lib.sqrt(b)
b10:2.17944947177033677611849099192980783
>>> 
>>> lib.power(a,b)
b10:<UNDEFINED>
>>> lib.power(b,a)
b10:0.020336020730908522185680627421418239
>>> 

Trigonometric and inverse trigonometric functions

>>> 
>>> import upmath.lib as lib
>>> a=lib.Number('0')
>>> b=lib.Number('390')
>>> c=lib.Number('-405')
>>> d=lib.Number('540')
>>> e=lib.Number('-90')
>>> 
>>> lib.sin(a)
b10:0
>>> lib.sin(b)
b10:0.5
>>> lib.sin(c)
b10:-0.707106781186547524400844362104849039
>>> d.sin(d)
b10:0
>>> lib.sin(e)
b10:-1
>>> 
>>> lib.tan(a)
b10:0
>>> lib.tan(c)
b10:-1
>>> lib.tan(d)
b10:0
>>> lib.tan(e)
b10:<-INF>
>>> lib.cosec(c)
b10:-1.41421356237309504880168872420969808
>>> lib.sec(d)
b10:-1
>>> lib.cot(e)
b10:0
>>> 
>>> a=lib.Number('0')
>>> b=lib.Number('1')
>>> c=lib.Number('-1')
>>> 
>>> lib.asin(a)
b10:0
>>> lib.acos(a)
b10:90
>>> 
>>> lib.asin(b)
b10:90
>>> lib.acos(b)
b10:0
>>> 
>>> lib.acot(b,unit='rad')
b10:0.785398163397448309615660845819875721
>>> lib.acot(b,unit='d')
b10:45
>>> 
>>> lib.acot(c)
b10:-45
>>> lib.atan(c)
b10:-45
>>> 

Hyperbolic and inverse hyperbolic functions

>>> 
>>> import upmath.lib as lib
>>> a=lib.Number('2')
>>> b=lib.Number('-2')
>>> c=lib.Number('0')
>>> 
>>> lib.sinh(a)
b10:3.6268604078470187676682139828012617
>>> lib.cosh(a)
b10:3.76219569108363145956221347777374611
>>> lib.tanh(b)
b10:-0.96402758007581688394641372410092315
>>> c.coth()
b10:0
>>> lib.sech(a)
b10:0.265802228834079692120862739819888972
>>> lib.cosech(b)
b10:-0.275720564771783207758351482163027121
>>> 
>>> a=lib.Number('2')
>>> b=lib.Number('0.5')
>>> c=lib.Number('0')
>>> 
>>> lib.asinh(a)
b10:1.44363547517881034249327674027310527
>>> lib.acosh(a)
b10:1.31695789692481670862504634730796844
>>> lib.atanh(b)
b10:0.549306144334054845697622618461262852
>>> lib.atanh(c)
b10:0
>>> lib.acoth(a)
b10:0.549306144334054845697622618461262852
>>> lib.asech(b)
b10:1.31695789692481670862504634730796844
>>> lib.acosech(c)
b10:<INF>
>>>

Gamma, beta and error functions

(Gamma and beta functions give accurate answers for positive whole numbers and approximate values for floating point numbers.)

>>> import upmath.lib as lib
>>> a=lib.Number('-1')
>>> b=lib.Number('2')
>>> c=lib.Number('0')
>>> 
>>> lib.gamma(b)
b10:1
>>> d=lib.Number('2.5')
>>> lib.gamma(d)
b10:1.32934038817913766044178571868836165
>>> lib.beta(b)
b10:0.5
>>> lib.beta(c)
b10:<INF>
>>> 
>>> lib.erf(a)
b10:-0.842700792949714869341220635082609259
>>> lib.erfc(a)
b10:1.84270079294971486934122063508260926
>>> lib.erfc(b)
b10:0.00467773498104726583793074363274707222
>>> lib.erf(b)
b10:0.995322265018952734162069256367252928
>>> lib.erf(c)
b10:0
>>> lib.erfc(c)
b10:1
>>> lib.erf(d)
b10:0.999593047982555041060435784260025087
>>> lib.erfc(d)
b10:0.000406952017444958939564215739974912563
>>> 

Euler, Bernoulli and Tangent numbers.

For odd positive integers, these numbers return zero.

>>> 
>>> import upmath.lib as lib
>>> a=lib.Number('2')
>>> b=lib.Number('3')
>>> c=lib.Number('7')
>>> d=lib.Number('8')
>>> e=lib.Number('9')
>>> 
>>> lib.eulerNumber(a)
b10:-1
>>> lib.eulerNumber(b)
b10:0
>>> lib.eulerNumber(c)
b10:0
>>> lib.eulerNumber(d)
b10:1385
>>> lib.eulerNumber(e)
b10:0
>>> 
>>> lib.bernoulliNumber(a)
b10:1/6
>>> lib.bernoulliNumber(b)
b10:0
>>> lib.bernoulliNumber(c)
b10:0
>>> lib.bernoulliNumber(d)
b10:-1/30
>>> lib.bernoulliNumber(e)
b10:0
>>> 
>>> lib.tangentNumber(a)
b10:1
>>> lib.tangentNumber(b)
b10:0
>>> lib.tangentNumber(c)
b10:0
>>> lib.tangentNumber(d)
b10:272
>>> lib.tangentNumber(e)
b10:0
>>> 

UPNumber (universal precision number) is a class instance. PSM functions can take the integer and floating point denary numbers directly.

>>> 
>>> import upmath.lib as lib
>>> lib.nCr(10,7)
b10:120
>>> lib.fact(15)
b10:1307674368000
>>> 
>>> lib.power(2,10)
b10:1024
>>> 
>>> lib.e
b10:2.7182818284590452353602874713526625
>>> lib.E
b10:2.7182818284590452353602874713526625
>>> lib.PI
b10:3.14159265358979323846264338327950288
>>> 

Public Properties and Methods of upnumber (universal precision number)

(prec = precision = number of siginificant digits)

Property Description
__base private property to hold the base of the upnumber
__base10prec private property to hpld the prec of converted numbers of other bases
__is_accurate private boolean property; True means the number is accurate within the given precision
__is_numeric private boolean property; True means it is a valid upnumber
__max_prec private property to hold the maximum prec value of the set prec and the number's prec
__modify private boolen property; True means the number will be modified during creation by simplification
__normal_prec private property to hold the prec value of the normalized number
__num private property to hold the user's number value
__parseddict private property to hold the parsed dictionary of the given upnumber
__prec private property to hold the user's precision to the upnumber
__ultra_modify private boolen property; True means super simplification done during creation of the upnumber

Magic Methods of UPNumber (universal precision number)

(a,b = upnumbers; prec = precision = number of siginificant digits)

Magic Method Arguments Description
__repr__(self) --- repr(a) returns the denary equivalent normalized form of the upnumber,a
__str__(self) --- str(a) or print(a) returns the string representation of the upnumber,a
__pos__(self) --- +a returns positive value of the upnumber,a; if 'a' is negative, negative 'a' returned
__neg__(self) --- -a returns negative value of the upnumber,a; if 'a' is negative, positive 'a' returned
__abs__(self) --- abs(a) returns positive value of the upnumber, a
__invert__(self) --- ~a returns the inverted value (1/a) of the upnumber, a
__int__(self) --- int(a) returns the integer value of the upnumber, a
__float__(self) --- float(a) returns the floating point value of the upnumber, a
__round__(self,n) n = positive integer round(a) returns the rounded value of the upnumber, a at nth decimal point
__add__(self,right) right returns an upnumber carrying value of additions like a+10, a+3.5, a+b
__radd__(self,left) left returns an upnumber carrying value of additions like 10+a, 3.5+a, b+a
__sub__(self,right) right returns an upnumber carrying value of subtractios like a-10, a-3.5, a-b
__rsub__(self,left) left returns an upnumber carrying value of subtractions like 10-a, 3.5-a, b-a
__mul__(self,right) right returns an upnumber carrying value of multiplications like a*10, a*3.5, a*b
__rmul__(self,left) left returns an upnumber carrying value of multiplications like 10*a, 3.5*a, b*a
__pow__(self,right) right returns an upnumber carrying value of power operations like a**10, a**3.5, a**b
__rpow__(self,left) left returns an upnumber carrying value of power operations like 10**a, 3.5**a, b**a
__truediv__(self,right) right returns an upnumber carrying value of divisions like a/10, a/3.5, a/b
__rtruediv__(self,left) left returns an upnumber carrying value of divisions like 10/a, 3.5/a, b/a
__floordiv__(self,right) right returns an upnumber carrying value of floor divisions like a//10, a//3.5, a//b
__rfloordiv__(self,left) left returns an upnumber carrying value of floor divisions like 10//a, 3.5//a, b//a
__mod__(self,right) right returns an upnumber carrying value of remainder in division like a%10, a%3.5, a%b
__rmod__(self,left) left returns an upnumber carrying value of remainder in division like 10%a, 3.5%a, b%a
__iadd__(self,right) right returns an upnumber carrying the addition value of the right and the number itself; a+=10, a+=3.5, a+=b
__isub__(self,right) right returns an upnumber carrying the subtraction value of the right from the number itself; a-=10, a-=3.5, a-=b
__imul__(self,right) right returns an upnumber carrying the multiplication value of the right and the number itself; a*=10, a*=3.5, a*=b
__itruediv__(self,right) right returns an upnumber carrying the division value of the right and the number itself; a/=10, a/=3.5, a/=b
__ifloordiv__(self,right) right returns an upnumber carrying the floor division value of the right and the number itself; a//=10, a//=3.5, a//=b
__ipow__(self,right) right returns an upnumber carrying the value of power operation between the right and the number itself like a**=10, a**=3.5, a**=b
__imod__(self,right) right returns an upnumber carrying the remainder value of division between the right and the number itself; a%=10, a%=3.5, a%=b
__eq__(self,right) right returns True or False; True returned when the operands are equal like a==10, a==3.5, a==b
__req__(self,left) left returns True or False; True returned when the operands are equal like 10==a, 3.5==a, b==a
__ne__(self,right) right returnsTrue or False; True returned when the operands are not equal like a!=10, a!=3.5, a!=b
__rne__(self,left) left returns True or False; True returned when the operands are not equal like 10!=a, 3.5!=a, b!=a
__gt__(self,right) right returns True or False; True returned when the upnumber,a is greater than the right operand like a>10, a>3.5, a>b
__rgt__(self,left) left returns True or False; True returned when the left operand is greater than the upnumber,a like 10>a, 3.5>a, b>a
__lt__(self,right) right returns True or False; True returned when the upnumber,a is less than the right operand like a<10, a<3.5, a<b
__rlt__(self,left) left returns True or False; True returned when the left operand is less than the upnumber,a like 10<a, 3.5<a, b<a
__ge__(self,right) right returns True or False; True returned when the upnumber,a is greater than or equal to the right operand like a>=10, a>=3.5, a>=b
__rge__(self,left) left returns True or False; True returned when the left operand is greater than or equal to the upnumber,a like 10>=a, 3.5>=a, b>=a
__le__(self,right) right returns True or False; True returned whenthe upnumber,a is less than or equal to the right operand like a<=10, a<=3.5, a<=b
__rle__(self,left) left returns True or False; True returned when the left operand is less than or equal to the upnumber,a like 10<=a, 3.5<=a, b<=a

Instance Methods of UPNumber (universal precision number)

(a,b = upnumbers; calling style: a.method_name(); prec = precision = number of siginificant digits)

Instance Method Arguments Description
ceil(self) --- returns the ceiling value (an integer) of the number instance
floor(self) --- returns the floor value (an integer) of the number instance
copy(self) --- returns the copy of the number instance
modify(self) --- modify the given fractional number by simplification
ultraModify(self) --- modify the given fractional number by as much simplification as possible
isAccurate(self) --- returns True or False; True means the number is correct to the digits, displayed
isNumeric(self) --- returns True or False; True means the upnumber is not undefined
isInteger(self) --- returns True or False; True means the upnumber is an integer
isFloat(self) --- returns True or False; True means the upnumber is a floating point number
isFractional(self) --- returns True or False; True means the upnumber is a fractional number
isRecurring(self) --- returns True or False; True means the upnumber is a recurring denary
isPositive(self) --- returns True or False; True means the upnumber is greater than zero
isNegative(self) --- returns True or False; True means the upnumber is less than zero
isPrime(self) --- returns True or False; True means the upnumber is a prime
isBinary(self) --- returns True or False; True means the upnumber is a valid binary number
isOctal(self) --- returns True or False; True means the upnumber isa valid octal number
isDenary(self) --- returns True or False; True means the upnumber is a valid denary number
isHexadecimal(self) --- returns True or False; True means the upnumber is a valid hexadecimal number
isBase32Number(self) --- returns True or False; True means the upnumber is a valid base32 number
isBase64Number(self) --- returns True or False; True means the upnumber is a valid base64 number
getBase(self) --- returns the original base of the number
getAccuracy(self) --- returns True or False; True means the number is correct to the digits, displayed
getSign(self) --- returns the sign of the upnumber
getBase(self) --- returns the base of the upnumber
getBase10Part(self) --- returns the dictionary with key 'base10' from self.__parseddict
getBase10Precision(self) --- returns the denary precision (base10_prec) from from self.__parseddict
forceResetPrecision(self) --- sets number precision forcefully
getBase10frPart(self) --- returns the dictionary with key 'base10fr' from self.__parseddict
displayInFPMode(self) --- displays upnumber in floating point mode
denaryFPtoFRMode(self) --- denary floating point number is converted to fractional form
createNewNumber(self,prec,is_accurate) --- returns a new upnumber with the given precision and accuracy
limitFloatingDigits(self,newprec,is_accurate) --- limits the floating digits into the given precision
denaryInteger(self) --- returns equivalent denary integer
setMaxPrecision(self,prec) --- sets new maximum precision value of the upnumber
getBinaryForm(self) --- returns the string version of equivalent binary
getOctalForm(self) --- returns the string version of equivalent octal
getHexadecimalForm(self) --- returns the string version of equivalent hexadecimal
getBase32Form(self) --- returns the string version of equivalent base32 number
getBase64Form(self) --- returns the string version of equivalent base64 number
getDenaryForm(self) --- returns the string version of equivalent denary
getInputMode(self) --- returns the input ('fp','fr') mode of the upnumber
getIntegerPart(self) --- returns the the integer part of the upnumber
getFloatingPart(self) --- returns the floating part of the upnumber
getNormalizedPart(self) --- returns the normalized part of the number dictionary
getNumerator(self) --- returns the numerator of the fractional upnumber
getDenominator(self) --- returns the denominator of the fractional upnumber
getDict(self) --- returns the number dictionary
getExponent(self) --- returns the exponent part of the number dictionary
getNormalizedForm(self) --- returns the string representation of the normalized part of the upnumber
getScientificForm(self) --- returns the scientific form of the upnumber
getPrecision(self) --- returns the precision of the upnumber set by the user
getNormalPrecision(self) --- returns the precision of the normalized part of the upnumber
getMaxPrecision(self) --- returns the maximum precision of the upnumber
getOriginal(self) --- returns the original upnumber given by the user


Precisional Standard Mathematical Functions (PSMF) in Tabular Presentation

(Short descriptions of Precisional Standard Math Functions)

Function Arguments Domain and Return
fact(n) n=positive integer or zero; factorial of n
nCr(n=None,r=None) n=positive integer;r=positive integer;n>=r integer; No of combinations
nPr(n=None,r=None) n=positive integer;r=positive integer;n>=r integer; No of permutations
ln(x=None,prec=36) x={R:x>=0};prec=positive integer natural logarithm of x
logE(x=None,prec=36) x={R:x>=0};prec=positive integer natural logarithm of x
lg(x=None,prec=36) x={R:x>=0};prec=positive integer 10-based logarithm of x
log10(x=None,prec=36) x={R:x>=0};prec=positive integer 10-based logarithm of x
exp(x=None,prec=36) x={R};prec=positive integer exponential of x, e**x
sqrt(x=None,prec=36) x={R:x>=0};prec=positive integer square root of x (real number)
power(x=None,y=None,prec=36) x=base {R:x>=0};y=power;prec=positive integer x**y is returned
sin(x=None,unit='d',prec=36) x=angle{R};unit=unit of angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -1 <=sin(x) <=1
cos(x=None,unit='d',prec=36) x=angle{R};unit=unit of angle ('d','D','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -1<= cos(x) <=1
tan(x=None,unit='d',prec=36) x=angle{R};unit=unit of angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -INF <= tan(x) <= INF
cot(x=None,unit='d',prec=36) x=angle{R};unit=unit of angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -INF <= cot(x) <= INF
sec(x=None,unit='d',prec=36) x=angle{R};unit=unit of angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer sec(x)>=1 or sec(x)<=-1
csc(x=None,unit='d',prec=36) x=angle{R};unit=unit of angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer cosec(x)>=1 or cosec(x)<=-1
cosec(x=None,unit='d',prec=36) x=angle{R};unit=unit of angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer cosec(x)>=1 or cosec(x)<=-1
asin(x=None,unit='d',prec=36) x={R:-1<=x<=1};unit=unit of output angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -PI/2<=asin(x)<=PI/2
acos(x=None,unit='d',prec=36) x={R:-1<=x<=1};unit=unit of output angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -PI/2<=acos(x)<=PI/2
atan(x=None,unit='d',prec=36) x={R};unit=unit of output angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -PI/2<=atan(x)<=PI/2
acot(x=None,unit='d',prec=36) x={R};unit=unit of output angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -PI/2<=acot(x)<=PI/2
asec(x=None,unit='d',prec=36) x={R:-1>=x>=1};unit=unit of output angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer 0<=asec(x)<=PI
acosec(x=None,unit='d',prec=36) x={R:-1>=x>=1};unit=unit of output angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -PI/2<=acosec(x)<=PI/2
acsc(x=None,unit='d',prec=36) x={R:-1>=x>=1};unit=unit of output angle ('d','D','deg','Deg','degre','Degre','r','R','c','rad','Rad','radian','Radian');prec=positive integer -PI/2<=acosec(x)<=PI/2
sinh(x=None,prec=36) x={R};prec=positive integer hyperbolic sin of x is returned;Range:{R}
cosh(x=None,prec=36) x={R};prec=positive integer hyperbolic cos of x is returned;Range:{R:y>=1}
tanh(x=None,prec=36) x={R};prec=positive integer hyperbolic tan of x is returned;Range:{R:-1<=f(x)<=1}
coth(x=None,prec=36) x={R};prec=positive integer hyperbolic cot of x is returned;Range:{R:-1>=f(x)>=1}
sech(x=None,prec=36) x={R};prec=positive integer hyperbolic sec of x is returned;Range:{R:1>=y>=0}
cosech(x=None,prec=36) x={R:x!=0};prec=positive integer hyperbolic cosec of x is returned;Range:{R}
csch(x=None,prec=36) x={R:x!=0};prec=positive integer hyperbolic cosec of x is returned;Range:{R}
asinh(x=None,prec=36) x={R};prec=positive integer hyperbolic sin inverse of x is returned;Range:{R}
acosh(x=None,prec=36) x={R:x>=1};prec=positive integer hyperbolic cos inverse of x is returned;Range:{R:y.=0}
atanh(x=None,prec=36) x={R:-1<=x<=1};prec=positive integer hyperbolic tan inverse of x is returned;Range:{R}
acoth(x=None,prec=36) x={R:-1>=x>=1};prec=positive integer hyperbolic cot inverse of x is returned;Range:{R}
asech(x=None,prec=36) x={R:1>=x>0};prec=positive integer hyperbolic sec inverse of x is returned;Range:{R:y>=0}
acosech(x=None,prec=36) x={R:x>0};prec=positive integer hyperbolic cosec inverse of x is returned;Range:{R:y>0}
acsch(x=None,prec=36) x={R:x>0};prec=positive integer hyperbolic cosec inverse of x is returned;Range:{R:y>0}
gamma(x=None,prec=36) x={R:x>0};prec=positive integer gamma of x is returned;Range:{R:f(x)>0}
beta(x=None,y=None,prec=36) x={R:x>0};y={R:y>0};prec=positive integer beta of x and y is returned;Range:{R:1>=f(x)>=0}
erf(x=None,prec=36) x={R};prec=positive integer
erfc(x=None,prec=36) x={R};prec=positive integer complementary error-function of x is returned;Range:{R:0=<f(x)<=2}
eulerNumber(r=None) r=positive integer if r is odd, 0(zero) is returned;otherwise integer returned
bernoulliNumber(r=None) r=positive integer if r is odd, 0(zero) is returned;otherwise fraction is returned
tangentNumber(r=None) r=positive integer if r is odd, 0(zero) is returned;otherwise integer returned

The Author and Maintainer of upmath library

For any issue on this library, please feel free to mail me: aminul71bd@gmail.com

 author's photo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

upmath-2.0.0.tar.gz (129.9 kB view details)

Uploaded Source

Built Distribution

upmath-2.0.0-py3-none-any.whl (72.9 kB view details)

Uploaded Python 3

File details

Details for the file upmath-2.0.0.tar.gz.

File metadata

  • Download URL: upmath-2.0.0.tar.gz
  • Upload date:
  • Size: 129.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for upmath-2.0.0.tar.gz
Algorithm Hash digest
SHA256 b07f8476f8dc42351719dc2ddba7495afefbd25d21f15243ee55c40e798834d2
MD5 0343638adf5df52846fdbf509418ad90
BLAKE2b-256 5b2f9acd746d11c2205a537a0a437b3fdd032315d74a78bb8489816046fd58ec

See more details on using hashes here.

File details

Details for the file upmath-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: upmath-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 72.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for upmath-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7d0da9235df39c925df3edd143b5786c207bf8222112691b6490f90bb7366079
MD5 81648e1779b260b7b87079e38d808c83
BLAKE2b-256 206fb9ec7570879e9b38c5d062f68baf911407a57a61675308a38f0bdd8050e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page