Skip to main content

UQ4k: Uncertaininty Quantification of the 4th Kind

Project description

UQ4k: Uncertaininty Quantification of the 4th Kind

This package accompines the Uncertainty Quantification of the 4th kind; optimal posterior accuracy-uncertainty tradeoff with the minimum enclosing ball paper.

UQTheorem

Paper's Abstract

There are essentially three kinds of approaches to Uncertainty Quantification (UQ): (A) robust optimization, (B) Bayesian, (C) decision theory. Although (A) is robust, it is unfavorable with respect to accuracy and data assimilation. (B) requires a prior, it is generally brittle and posterior estimations can be slow. Although (C) leads to the identification of an optimal prior, its approximation suffers from the curse of dimensionality and the notion of risk is one that is averaged with respect to the distribution of the data. We introduce a 4th kind which is a hybrid between (A), (B), (C), and hypothesis testing. It can be summarized as, after observing a sample x, (1) defining a likelihood region through the relative likelihood and (2) playing a minmax game in that region to define optimal estimators and their risk. The resulting method has several desirable properties (a) an optimal prior is identified after measuring the data, and the notion of risk is a posterior one, (b) the determination of the optimal estimate and its risk can be reduced to computing the minimum enclosing ball of the image of the likelihood region under the quantity of interest map (which is fast and not subject to the curse of dimensionality). The method is characterized by a parameter in [0,1] acting as an assumed lower bound on the rarity of the observed data (the relative likelihood). When that parameter is near 1, the method produces a posterior distribution concentrated around a maximum likelihood estimate with tight but low confidence UQ estimates. When that parameter is near 0, the method produces a maximal risk posterior distribution with high confidence UQ estimates. In addition to navigating the accuracy-uncertainty tradeoff, the proposed method addresses the brittleness of Bayesian inference by navigating the robustness-accuracy tradeoff associated with data assimilation.

Installation

The package can be simply installed by:

$ pip install uq4k

Usage

To fully run the provided examples, you'll need to have matplotlib in your environment

There are two versions of uq4k that can be used: gradient-based version and non-gradient version. For the gradient-based, consult the gradient-based quadratic model example for the usage. For the non-gradient version, check:

Detailed instruction on applying uq4k for your custom models will be provided soon

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

uq4k-0.1.0b3.tar.gz (21.3 kB view details)

Uploaded Source

Built Distribution

uq4k-0.1.0b3-py2.py3-none-any.whl (19.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file uq4k-0.1.0b3.tar.gz.

File metadata

  • Download URL: uq4k-0.1.0b3.tar.gz
  • Upload date:
  • Size: 21.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.8.2 requests/2.27.1 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.9.6

File hashes

Hashes for uq4k-0.1.0b3.tar.gz
Algorithm Hash digest
SHA256 53b1fc40d33fcc836044188dba848d281fd7fa689d3c9c524f110bfb00c8ec76
MD5 e0f15e9a34840b5c3d6f1ea1bf57f975
BLAKE2b-256 c2831eb252814d7a498f169324085a817b8b770d7cfa3b385e7a8d2d5e03315b

See more details on using hashes here.

File details

Details for the file uq4k-0.1.0b3-py2.py3-none-any.whl.

File metadata

  • Download URL: uq4k-0.1.0b3-py2.py3-none-any.whl
  • Upload date:
  • Size: 19.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.8.2 requests/2.27.1 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.9.6

File hashes

Hashes for uq4k-0.1.0b3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 25a2577113225715df1f82743eb1b991b04ad111a884d79d3ad6063fc04ae4d9
MD5 100f18a7a6c5020104959c3998a34bc2
BLAKE2b-256 d0703be46738b592f92af6a9cc6056faa28211dd29f1843662961b5060e718c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page